

Geography Markup Language (GML) 2.0

OpenGIS® Implementation Specification, 20 February 2001

OGC Document Number: 01-029

This version:
http://www.opengis.net/gml/01-029/GML2.html
(Available as: PDF, zip archive of XHTML)

Latest version:
http://www.opengis.net/gml/01-029/GML2.html

Previous versions:
http://www.opengis.net/gml/00-029/GML.html

Editors:
Simon Cox (CSIRO Exploration & Mining) <Simon.Cox@dem.csiro.au>
Adrian Cuthbert (SpotOn MOBILE) <adrian@spotonmobile.com>
Ron Lake (Galdos Systems, Inc.) <rlake@galdosinc.com>
Richard Martell (Galdos Systems, Inc.) <rmartell@galdosinc.com>

Contributors:
Simon Cox (CSIRO Exploration & Mining) <Simon.Cox@dem.csiro.au>
Adrian Cuthbert (SpotOn MOBILE) <adrian@spotonmobile.com>
Paul Daisey (U.S. Census Bureau) <pdaisey@geo.census.gov>
John Davidson (OGC IP2000 Team) <georef@erols.com>
Sandra Johnson (MapInfo Corporation) <sandra_johnson@mapinfo.com>
Edric Keighan (Cubewerx Inc.) <ekeighan@cubewerx.com>
Ron Lake (Galdos Systems Inc.) <rlake@galdosinc.com>
Marwa Mabrouk (ESRI Ltd.) <mmabrouk@esri.com>
Serge Margoulies (IONIC Software) <serge.margoulies@ionicsoft.com>
Richard Martell (Galdos Systems, Inc.) <rmartell@galdosinc.com>
Lou Reich (NASA/CSC) <louis.i.reich@gsfc.nasa.gov>
Barry O'Rourke (Compusult Ltd.) <barry@compusult.nf.ca>
Jayant Sharma (Oracle Corporation) <jsharma@us.oracle.com>

Page 1 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Panagiotis (Peter) Vretanos (CubeWerx Inc.) <pvretano@cubewerx.com>

Copyright © 2001 OGC, All Rights Reserved.

Abstract

The Geography Markup Language (GML) is an XML encoding for the transport and storage
of geographic information, including both the spatial and non-spatial properties of geographic
features. This specification defines the XML Schema syntax, mechanisms, and conventions
that

! Provide an open, vendor-neutral framework for the definition of geospatial application
schemas and objects;

! Allow profiles that support proper subsets of GML framework descriptive capabilities;
! Support the description of geospatial application schemas for specialized domains and

information communities;
! Enable the creation and maintenance of linked geographic application schemas and

datasets;
! Support the storage and transport of application schemas and data sets;
! Increase the ability of organizations to share geographic application schemas and the

information they describe.

Implementers may decide to store geographic application schemas and information in GML,
or they may decide to convert from some other storage format on demand and use GML only
for schema and data transport.

Document status

This document is an OpenGIS® Implementation Specification.

XML instances which are compliant to this specification shall validate against a conforming
application schema. A conforming application schema shall import the Geometry Schema
(geometry.xsd), the Feature Schema (feature.xsd), and the XLinks schema (xlinks.xsd) as base
schemas; furthermore, it shall be developed using the rules for the development of application
schemas specified in section 5 of this document.

Sections 1 and 2 of this document present the background information and modeling concepts
that are needed to understand GML. Section 3 presents the GML conceptual model which is
independent of encoding. Section 4 presents material which discusses the encoding of the

Page 2 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML conceptual model using the XML Schema definition language (XSDL). This material is
intended to demonstrate how to employ the normative GML geometry and feature schemas
specified in Appendices A and B of this document. Section 5 of this document presents the
rules for the development of conformant GML application schemas. Section 6 presents
examples to illustrate techniques for constructing compliant GML application to model
recurring geographic themes; these techniques are not normative but they do represent the
collective experience of the editors of this document and are strongly recommended.
Conforming profiles of this document shall be developed according the the rules specified in
section 7. Appendix A presents the Geometry schema, Appendix B presents the Feature
schema, and Appendix C presents the XLinks schema.

The OpenGIS Consortium (OGC) invites comments on this Implementation Specification--
please submit them to gml.sig@opengis.org.

Table of Contents

1. Representing geographic features
1.1 Introduction
1.2 Feature and Geometry models

2. Overview of GML
2.1 Design goals
2.2 Schemas for geospatial data
2.3 Graphical rendering

3. Conceptual framework
3.1 Features and properties
3.2 Geometric properties
3.3 Application schemas

4. Encoding GML
4.1 Introduction
4.2 Encoding features without geometry
4.3 Encoding geometry
4.4 Encoding features with geometry
4.5 Encoding feature collections
4.6 Encoding feature associations

5. GML application schemas

Page 3 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

5.1 Introduction
5.2 Rules for constructing application schemas (normative)

6. Worked examples of application schemas (non-normative)

7. Profiles of GML

Appendix A: The Geometry schema, v2.06 (normative)
Appendix B: The Feature schema, v2.06 (normative)
Appendix C: The XLinks schema, v2.01 (normative)
Appendix D: References
Appendix E: Revision history

1 Representing geographic features

1.1 Introduction

This section introduces the key concepts required to understand how the Geography Markup
Language (GML) models the world. It is based on the OGC Abstract Specification (available
online: http://www.opengis.org/techno/specs.htm), which defines a geographic feature as "an
abstraction of a real world phenomenon; it is a geographic feature if it is associated with a
location relative to the Earth." Thus a digital representation of the real world can be thought of
as a set of features. The state of a feature is defined by a set of properties, where each property
can be thought of as a {name, type, value} triple. The number of properties a feature may
have, together with their names and types, are determined by its type definition. Geographic
features are those with properties that may be geometry-valued. A feature collection is a
collection of features that can itself be regarded as a feature; as a consequence a feature
collection has a feature type and thus may have distinct properties of its own, in addition to the
features it contains.

This specification is concerned with what the OGC calls simple features: features whose
geometric properties are restricted to 'simple' geometries for which coordinates are defined in
two dimensions and the delineation of a curve is subject to linear interpolation. While this
release of GML does permit coordinates to be specified in three dimensions, it currently
provides no direct support for three-dimensional geometry constructs. The term 'simple
features' was originally coined to describe the functionality defined in the set of OpenGIS®
Implementation Specifications (available online: http://www.opengis.org/techno/specs.htm);

2: GML overview Go

Page 4 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML follows the geometry model defined in these specifications. For example, the traditional
0, 1 and 2-dimensional geometries defined in a two-dimensional spatial reference system
(SRS) are represented by points, line strings and polygons. In addition, the geometry model
for simple features also allows geometries that are collections of other geometries (either
homogeneous multi-point, multi-line string and multi-polygon collections, or heterogeneous
geometry collections). In all cases the 'parent' geometry element is responsible for indicating
in which SRS the measurements have been made.

How can GML be used to represent real-world phenomena? Suppose somebody wishes to
build a digital representation of the city of Cambridge in England. The city could be
represented as a feature collection where the individual features represent such things as
rivers, roads and colleges; such a classification of real world phenomena determines the
feature types that need to be defined. The choice of classification is related to the task to which
the digital representation will ultimately be put. The River feature type might have a property
called name whose value must be of the type 'string'. It is common practice to refer to the
typed property; thus the River feature type is said to have a string property called name.
Similarly, the Road feature type might have a string property called classification and an
integer property called number. Properties with simple types (e.g. integer, string, float,
boolean) are collectively referred to as simple properties.

The features required to represent Cambridge might have geometry-valued properties as well
as simple properties. Just like other properties, geometric properties must be named. So the
River feature type might have a geometric property called centerLineOf and the Road feature
type might have a geometric property called linearGeometry. It is possible to be more precise
about the type of geometry that can be used as a property value. Thus in the previous examples
the geometric property could be specialised to be a line string property. Just as it is common to
have multiple simple properties defined on a single feature type, so too a feature type may
have multiple geometric properties.

1.2 Feature and Geometry models

The abstract feature model used by the Open GIS Consortium is shown in Figure 1.1 using
Syntropy notation. While it is common practice in the Geospatial Information (GI) community
to refer to the properties of a feature as attributes, this document refers to them as properties in
order to avoid potential confusion with the attributes of XML elements.

Figure 1.1: The abstract feature model

Page 5 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The 'Simple Features' model represents a simplification of the more general model described
in the OpenGIS Abstract Specification, this simplification was the result of developing a
number of implementation specifications. There are two major simplifications:

! Features are assumed to have either simple properties (booleans, integers, reals, strings)
or geometric properties; and

! Geometries are assumed to be defined in two-dimensional SRS and use linear
interpolation between coordinates.

A number of consequences follow from these simplifications. For example, simple features
only provide support for vector data; and simple features are not sufficiently expressive to
explicitly model topology. This version of GML addresses the first of these limitations in that
it allows features to have complex or aggregate non-geometric properties. Such complex
properties may themselves be composed of other complex and simple properties. Common
examples include dates, times, and addresses. It is expected that future versions of GML will
address the second of these limitations and provide more elaborate geometry models.

The geometry object model for simple features (Figure 1.2) has an (abstract) base Geometry
class and associates each geometry object with an SRS that describes the coordinate space in
which the object is defined. GML mirrors this class hierarchy but omits some intermediate
(i.e. non-leaf) types such as Curve, Surface, MultiSurface, and MultiCurve.

Figure 1.2: The geometry model for simple features

Page 6 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

2 Overview of GML

2.1 Design goals

GML was developed with a number of explicit design goals, a few of which overlap the
objectives of XML itself:

! provide a means of encoding spatial information for both data transport and data
storage, especially in a wide-area Internet context;

! be sufficiently extensible to support a wide variety of spatial tasks, from portrayal to
analysis;

! establish the foundation for Internet GIS in an incremental and modular fashion;
! allow for the efficient encoding of geo-spatial geometry (e.g. data compression);
! provide easy-to-understand encodings of spatial information and spatial relationships,

including those defined by the OGC Simple Features model;

3: Conceptual framework Go

Page 7 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

! be able to separate spatial and non-spatial content from data presentation (graphic or
otherwise);

! permit the easy integration of spatial and non-spatial data, especially for cases in which
the non-spatial data is XML-encoded;

! be able to readily link spatial (geometric) elements to other spatial or non-spatial
elements.

! provide a set common geographic modeling objects to enable interoperability of
independently-developed applications.

GML is designed to support interoperability and does so through the provision of basic
geometry tags (all systems that support GML use the same geometry tags), a common data
model (features/properties), and a mechanism for creating and sharing application schemas.
Most information communities will seek to enhance their interoperability by publishing their
application schemas; interoperability may be further improved in some cases through the use
of profiles as outlined in section 7.

2.2 Schemas for geospatial data

In general terms a schema defines the characteristics of a class of objects; in XML a schema
also describes how data is marked up. GML strives to cater to a broad range of users, from
neophytes to domain experts interested in modeling the semantics of geo-spatial information.
Version 2.0 of GML is compliant with the XML Schema Candidate Recommendation
published by the W3C in two parts on 24 October 2000 [XMLSchema1], [XMLSchema2]).
GML has also been developed to be consistent with the XML Namespaces Recommendation
[XMLName]. Namespaces are used to distinguish the definitions of features and properties
defined in application-specific domains from one another, and from the core constructs
defined in GML modules.

Geospatial feature types can be considered apart from their associated schemas. That is, a
Road type (or class) exists independently of its schema definition whether it's expressed in
terms of a DTD or an XML Schema. In GML 2.0 geospatial types are captured as element
names, but these names assert the existence of model-level types separately from their XML
Schema encodings. Consider the following example: a Road type is introduced in an
application schema by declaring a global <Road> element of a type named RoadType
(<element name="Road" type="RoadType"/>). We note the interplay of two perspectives:
conceptual and implementation. Declaring that width is a property of a Road is a model-level
assertion that says nothing about whether width is a floating point number with two decimal
places or simply an integer--these are data and process characteristics at the implementation
level.

GML 2.0 defines three base schemas for encoding spatial information. The Geometry schema

Page 8 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

(geometry.xsd) replaces the DTD that appeared in GML 1.0. This release provides an
enhanced Feature schema that supports feature collections (as feature types) and includes
common feature properties such as fid (a feature identifier), name and description. The XLink
schema provides the XLink attributes to support linking functionality. Database
implementations are required to provide an application schema that defines the schema
expressions for the geographic features that they support, and these are derived from the
definitions found in the Feature schema.

The XML schema definition language provides a superset of the facilities provided by the
DTD validation mechanism defined in the XML 1.0 specification. XML Schema provides a
rich set of primitive datatypes (e.g. string, boolean, float, month), and it allows the creation of
built-in and user-defined datatypes. XML Schema offers several advantages when it comes to
constraining GML encodings:

! it enables the intermingling of different vocabularies using namespaces;
! it permits finer control over the structure of the type definition hierarchy; and
! it confers extensibility and flexibility via derived types and substitution groups

2.3 Graphical rendering

GML has been designed to uphold the principle of separating content from presentation. GML
provides mechanisms for the encoding of geographic feature data without regard to how the
data may be presented to a human reader. Since GML is an XML application, it can be readily
styled into a variety of presentation formats including vector and raster graphics, text, sound
and voice. Generation of graphical output such as maps is one of the most common
presentations of GML and this can be accomplished in a variety of ways including direct
rendering by graphical applets or styling into an XML graphics technology (e.g. SVG [SVG]
or X3D [VRML200x]). It should be noted that GML is not dependent on any particular XML
graphical specification.

3 The conceptual framework

3.1 Features and properties

GML is an XML encoding for geographic features. In order to correctly interpret a GML
document it is necessary to understand the conceptual model that underlies GML, which is
described in the OGC Abstract Specification.

4: Base schemas Go

Page 9 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

3.1.1 Object Model

A geographic feature is essentially a named list of properties. Some or all of these properties
may be geospatial, describing the position and shape of the feature. Each feature has a type,
which is equivalent to a class in object modeling terminology, such that the class-definition
prescribes the named properties that a particular feature of that type is required to have. So a
Road might be defined to have a name, a surface-construction, a destination, and a centreLine.
The properties themselves are modeled in UML as associations, or as attributes, of the feature
class. The feature property type is given by the rolename from an association, or by the
attribute name. The values of the properties are themselves also instances of defined classes or
types. So the Road name is a text-string, the surface-construction might be a text token
selected from an enumerated list, the destination is another feature of type Town, and the
centreLine is a LineString, which is a geometry property.

In UML it is partly a matter of taste whether a property is represented as an association or
attribute, though it is common for a property with a complex or highly structured type to be
modeled as an association, while simple properties are typically class attributes. If the value of
a property only exists in the presence of the feature, such as the Road name, then it may use
either a UML composition association or be represented as an attribute, as these two methods
are functionally equivalent. However, if the value of a property is loosely bound to the object
and the property value is an object that might exist independently of the feature, such as the
Town that is the destination of a Road, then it must use a form of UML association called
aggregation (see Figure 3.1).

Figure 3.1: Composition and aggregation relationships

3.1.2 XML encoding of the object model

Page 10 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

A feature is encoded as an XML element whose name is the feature type according to some
classification. The feature instance contains feature properties, each as an XML element
whose name is the property name. Each of these contains another element whose name is the
type of the property value or instance; this produces a "layered" syntax in which properties
and instances are interleaved.

GML adopts a uniform coding convention to help distinguish properties from instances:
element names that represent instances of GML classes start with an uppercase letter (e.g.
Polygon), while tags that represent properties start with a lowercase letter; all embedded
words in the property name start with uppercase letters (e.g. centerLineOf).

3.1.3 Functional view of the object model

From a functional perspective we can consider a property as a function that maps a feature
onto a property value. A property is characterised by the input feature type and the type of the
value that is returned. For example, suppose the feature type House has a String property
called address and a Polygon property called extentOf. Using functional notation we can then
write:

address(House) = String
extentOf(House)= Polygon

This approach can also be applied to feature collections that have features as members:

featureMember(FeatureCollection) = Feature

3.2 Geometric properties

In general the definition of feature properties lies in the domain of application schemas.
However, since the OGC abstract specification defines a small set of basic geometries, GML
defines a set of geometric property elements to associate these geometries with features.

The GML Feature schema also provides descriptive names for the geometry properties,
encoded as common English language terms. Overall, there are three levels of naming
geometry properties in GML:

1. Formal names that denote geometry properties in a manner based on the type of
geometry allowed as a property value

2. Descriptive names that provide a set of standardised synonyms or aliases for the formal
names; these allow use of a more user-friendly set of terms.

3. Application-specific names chosen by users and defined in application schemas based
on GML

Page 11 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The formal and descriptive names for the basic geometric properties are listed in Table 3.1;
these names appear in the Feature schema to designate common geometric properties. The
precise semantics of these geometry properties (e.g. "What does position of an object mean?"
or "Are location and position synonymous?") is not specified.

There are no inherent restrictions in the type of geometry property a feature type may have.
For example, a RadioTower feature type could have a location that returns a Point geometry to
identify its location, and have another geometry property called extentOf that returns a
Polygon geometry describing its physical structure. A geometric property can be modeled in
UML as an association class. Figure 3.2 illustrates how the geometryProperty relation
associates an abstract feature type with an abstract geometry type.

Figure 3.2: Geometric properties as instances of an association class

Table 3.1: Basic geometric properties

Formal name Descriptive name Geometry type

boundedBy - Box

pointProperty location, position, centerOf Point

lineStringProperty centerLineOf, edgeOf LineString

polygonProperty extentOf, coverage Polygon

geometryProperty - any

multiPointProperty multiLocation, multiPosition, multiCenterOf MultiPoint

multiLineStringProperty multiCenterLineOf, multiEdgeOf MultiLineString

multiPolygonProperty multiExtentOf, multiCoverage MultiPolygon

multiGeometryProperty - MultiGeometry

Page 12 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

In Figure 3.2 we also see that a pointProperty is a concrete instance of GeometryProperty
that links a feature instance with a <Point> instance. An important point needs to be
emphasized here: GML uses property elements to carry the role name of an association; this
preserves important semantic relationships that would otherwise be difficult--or impossible--to
infer. Such a practice also helps to maintain congruence between a GML schema and its
corresponding UML model (if one exists).

3.3 Application schemas

Three base XML Schema documents are provided by GML: feature.xsd which defines the
general feature-property model, geometry.xsd which includes the detailed geometry
components, and xlinks.xsd which provides the XLink attributes used to implement linking
functionality. These schema documents alone do not provide a schema suitable for
constraining data instances; rather, they provide base types and structures which may be used
by an application schema. An application schema declares the actual feature types and
property types of interest for a particular domain, using components from GML in standard
ways. Broadly, these involve defining application-specific types which are derived from types
in the standard GML schemas, or by directly including elements and types from the standard
GML schemas.

The base GML schemas effectively provide a meta-schema, or a set of foundation classes,
from which an application schema can be constructed. User-written application schemas may
declare elements and/or define types to name and distinguish significant features and feature
collections from each other; the methods used to accomplish this are presented in section 4. A
set of (normative) guidelines and rules for developing an application schema which conforms
with GML are given in section 5. By following these rules and deriving the types defined in an
application schema from components in the base GML schemas, the application schema
benefits from standardised constructs and is guaranteed to conform to the OGC Feature

Page 13 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Model. A number of complete examples appear in section 6.

The GML Geometry schema is listed in Appendix A. The <import> element in the Geometry
schema brings in the definitions and declarations contained in the XLinks schema. The GML
Geometry schema includes type definitions for both abstract geometry elements, concrete
(multi) point, line and polygon geometry elements, as well as complex type definitions for the
underlying geometry types.

The GML Feature schema is listed in Appendix B. The <include> element in the Feature
schema brings in the definitions and declarations contained in the Geometry schema; like the
geometry schema, the Feature schema defines both abstract and concrete elements and types.

4 Encoding GML

4.1 Introduction

This section describes how to encode geospatial (geographic) features in GML. The encoding
of spatial features using GML 2.0 requires the use of two XML Schemas: the GML Feature
Schema (feature.xsd) and the GML Geometry Schema (geometry.xsd); with these two simple
schemas it is possible to encode a wide variety of geospatial information.

The remainder of this sub-section introduces the two XML Schemas using UML notation. The
following sub-sections provide an introduction to encoding geospatial information in GML
2.0, broken down as follows:

! 4.2 Encoding a feature without geometry
! 4.3 Encoding geometry
! 4.4 Encoding a feature with geometry
! 4.5 Encoding collections of features
! 4.6 Encoding associations between features

First-time readers may wish to skip this sub-section and proceed directly to 4.2; starting from
section 4.2 we present an extended set of examples which progessively introduce the
components of GML 2.0. Individuals wishing to use GML as a simple means of structuring
spatial information for transport are referred to Listing 6.6.

4.1.1 The Geometry schema

5: Application schemas Go

Page 14 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The Unified Modeling Language (UML) offers a fairly general means of visually representing
the elements of an application schema; a class diagram presents a concise overview of defined
types, and a package diagram depicts higher-level groupings of model elements. The base
schemas can be viewed as distinct packages with the dependencies as illustrated in Figure 4.1.

Figure 4.1: Base schemas as packages

The GML Geometry schema includes type definitions for both abstract geometry elements,
concrete (multi) point, line and polygon geometry elements, as well as complex type
definitions for the underlying geometry types. Figure 4.2 is a UML representation of the
Geometry schema; this diagram provides a bridge between the wide-ranging OGC Abstract
Specification (Topic 1: Feature Geometry) and the GML Geometry schema--it includes many
of the 'well-known' structures described in the abstract specification.

Figure 4.2: UML representation of the Geometry schema

Page 15 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The <<restriction>> stereotype applied to a generalization relationship indicates that a subtype
defined in the schema is derived by restriction from its supertype. For example, the
MultiLineString class is a geometry collection in which a member must be a LineString.
The complete GML Geometry schema appears in Appendix A; it is liberally documented with
<annotation> elements. By convention, explicity named type definitions take the
corresponding class name and append the 'Type' suffix (e.g. LineString becomes
LineStringType). Type names are in mixed case with a leading capital; the names of
geometric properties and attributes are in mixed case with a leading lower case character. The
names of abstract elements are in mixed case with a leading underscore (e.g. _Feature) to
highlight their abstract character.

The Geometry schema targets the 'gml' namespace. A namespace is a conceptual entity
identified by a URI ("http://www.opengis.org/gml" for the core gml namespace) that denotes a

Page 16 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

collection of element names and type definitions that belong together--they comprise a
cohesive vocabulary. User-defined schemas are required to declare their own target namespace
as discussed in section 5.2.4.

4.1.2 The Feature schema

The Feature schema uses the <include> element to bring in the GML geometry constructs and
make them available for use in defining feature types:

Figure 4.3 is a UML representation of the Feature schema. Note that a geometric property is
modeled as an association class that links a feature with a geometry; concrete geometric
property types such as PointProperty constrain the geometry to a particular type (e.g.Point).

Figure 4.3: UML representation of the Feature schema

<include schemaLocation="geometry.xsd"/>

Page 17 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The GML Feature schema is listed in Appendix B. The <include> element in the Feature
schema brings in the definitions and declarations contained in the Geometry schema. Like the
geometry schema, the Feature schema defines both abstract and concrete elements and types.
User-written schemas may define elements and/or types to name and distinguish significant
features and feature collections from each other.

4.2 Encoding features without geometry

Although it is not anticipated that many features will be encoded in GML 2.0 without any
geometry properties, this section starts off with a simple example based on an aspatial feature.
This is referred to as the 'Dean' example. There is a feature type called Dean that is defined to
have a string property called familyName and an integer property called age. In addition a
Dean feature can have zero or more string properties called nickName. Thus a single instance

Page 18 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

of the Dean feature type might be encoded in XML as:

Without any thought for GML, one could define the relevant XML Schema to support this as:

However, using the Feature schema from GML, it is necessary to identify what plays the role
of features (and their types) and what plays the role of properties. In the Dean example Dean is
a feature type and age is a property. This is indicated in GML by the following:

It should be noted that not only does the instance document validate against both of these
XML Schema definitions but the content model of DeanType is the same in both XML
Schema definitions. Using the Feature schema from GML enables the use of pre-defined
attributes. For example features can be identified with the 'fid' attribute, and features can be
described using a predefined gml:description property. These capabilities are inherited from
gml:AbstractFeatureType (to be more precise Dean extends gml:AbstractFeatureType).

<Dean>
<familyName>Smith</familyName>
<age>42</age>
<nickName>Smithy</nickName>
<nickName>Bonehead</nickName>

</Dean>

<element name="Dean" type="ex:DeanType" />
<complexType name="DeanType">

<sequence>
<element name="familyName" type="string"/>
<element name="age" type="integer"/>
<element name="nickName" type="string" minOccurs="0" maxOccurs="unbounde

</sequence>
</complexType>

<element name="Dean" type="ex:DeanType"
substitutionGroup="gml:_Feature" />

<complexType name="DeanType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="familyName" type="string"/>
<element name="age" type="integer"/>
<element name="nickName" type="string" minOccurs="0" maxOccurs="unbo

</sequence>
</extension>

</complexContent>
</complexType>

<Dean fid="D1123">
<gml:description>A nice old chap</gml:description>

Page 19 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

4.3 Encoding geometry

This section describes how GML encodes basic geometry types, and it introduces the GML
Geometry schema (geometry.xsd) that supports this encoding. The geometry schema
corresponds quite closely to the geometry encoding embodied by the DTD put forth in the
GML 1.0 document. The material in this section should be read by all prospective GML users.

In accord with the OGC Simple Features model, GML provides geometry elements
corresponding to the following geometry classes:

! Point
! LineString
! LinearRing
! Polygon
! MultiPoint
! MultiLineString
! MultiPolygon
! MultiGeometry

In addition there are <coordinates> and <coord> elements for encoding coordinates, and a
<Box> element for defining extents. The following sections describe in detail the encoding of
each of these fundamental types of geometry elements.

4.3.1 Coordinates

The coordinates of any Geometry class instance are encoded either as a sequence of <coord>
elements that encapsulate tuple components, or as a single string contained within a
<coordinates> element. The advantage of using <coord> elements is that a validating XML
parser can perform basic type checking and enforce constraints on the number of tuples that
appear in a particular geometry instance. Both approaches can convey coordinates in one, two,
or three dimensions. The relevant schema fragments can be found in the Geometry schema:

<familyName>Smith</familyName>
<age>42</age>
<nickName>Smithy</nickName>
<nickName>Bonehead</nickName>

</Dean>

<element name="coord" type="gml:CoordType" />

<complexType name="CoordType">
<sequence>

Page 20 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

An additional level of constraint restricts the number of tuples by data type. For example, a
<Point> element contains exactly one coordinate tuple:

As an alternative, coordinates can also be conveyed by a single string. By default the
coordinates in a tuple are separated by commas, and successive tuples are separated by a space
character (#x20). While these delimiters are specified by several attributes, a user is free to
define a localized coordinates list that is derived by restriction from gml:CoordinatesType.
An instance document could then employ the xsi:type attribute to substitute the localized
coordinates list wherever a <coordinates> element is expected; such a subtype could employ
other delimiters to reflect local usage.

It is expected that a specialized client application will extract and validate string content, as
these functions will not be performed by a general XML parser. The formatting attributes will
assume their default values if they are not specified for a particular instance; the
<coordinates> element must conform to these XML Schema fragments:

This would allow the Point example provided above to be encoded as:

4.3.2 Geometry elements

<element name="X" type="decimal"/>
<element name="Y" type="decimal" minOccurs="0"/>
<element name="Z" type="decimal" minOccurs="0"/>

</sequence>
</complexType>

<Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<coord><X>5.0</X><Y>40.0</Y></coord>

</Point>

<element name="coordinates" type="gml:CoordinatesType"/>

<complexType name="CoordinatesType">
<simpleContent>

<extension base="string">
<attribute name="decimal" type="string" use="default" value="."/>
<attribute name="cs" type="string" use="default" value=","/>
<attribute name="ts" type="string" use="default" value=" "/>

</extension>
</simpleContent>

</complexType>

<Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<coordinates>5.0,40.0</coordinates>

</Point>

Page 21 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The coordinates for a geometry are defined within some spatial reference system (SRS), and
all geometries must specify this SRS. GML 2.0 does not address the details of defining spatial
reference systems. There is currently a proposed XML-based specification for handling
coordinate reference systems and coordinate transformations [OGC00-040]. The srsName
attribute of the geometry types can be used to test for the equality of SRS between different
geometries. The srsName (since it is a URI reference) may be navigated to the definition of
the SRS. It is expected that the pending SRS specification will be applicable to GML
encodings, perhaps in the guise of a Geodesy module derived from that specification.

The optional gid attribute of the geometry types represents a unique identifier for geometry
elements; this is an ID-type attribute whose value must be text string that conforms to all
XML name rules (i.e. the first character cannot be a digit).

4.3.3 Primitive geometry elements

The Point element is used to encode instances of the Point geometry class. Each <Point>
element encloses either a single <coord> element or a <coordinates> element containing
exactly one coordinate tuple; the srsName attribute is optional since a Point element may be
contained in other elements that specify a reference system. Similar considerations apply to
the other geometry elements. The Point element, in common with other geometry types, also
has an optional gid attribute that serves as an identifier. Here's an example:

The Box element is used to encode extents. Each <Box> element encloses either a sequence of
two <coord> elements or a <coordinates> element containing exactly two coordinate tuples;
the first of these is constructed from the minimum values measured along all axes, and the
second is constructed from the maximum values measured along all axes. A value for the
srsName attribute should be provided, since a Box cannot be contained by other geometry
classes. A Box instance looks like this:

A LineString is a piece-wise linear path defined by a list of coordinates that are assumed to be
connected by straight line segments. A closed path is indicated by having coincident first and
last coordinates. At least two coordinates are required. Here's an example of a LineString
instance:

<Point gid="P1" srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<coord><X>56.1</X><Y>0.45</Y></coord>

</Point>

<Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<coord><X>0.0</X><Y>0.0</Y></coord>
<coord><X>100.0</X><Y>100.0</Y></coord>

</Box>

Page 22 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

A LinearRing is a closed, simple piece-wise linear path which is defined by a list of
coordinates that are assumed to be connected by straight line segments. The last coordinate
must be coincident with the first coordinate and at least four coordinates are required (the
three to define a ring plus the fourth duplicated one). Since a LinearRing is used in the
construction of Polygons (which specify their own SRS), the srsName attribute is not needed.

A Polygon is a connected surface. Any pair of points in the polygon can be connected to one
another by a path. The boundary of the Polygon is a set of LinearRings. We distinguish the
outer (exterior) boundary and the inner (interior) boundaries; the LinearRings of the interior
boundary cannot cross one another and cannot be contained within one another. There must be
at most one exterior boundary and zero or more interior boundary elements. The ordering of
LinearRings and whether they form clockwise or anti-clockwise paths is not important. A
following example of a Polygon instance has two inner boundaries and uses coordinate
strings:

4.3.4 Geometry collections

There are a number of homogeneous geometry collections that are predefined in the Geometry
schema. A MultiPoint is a collection of Points; a MultiLineString is a collection of
LineStrings; and a MultiPolygon is a collection of Polygons. All of these collections each use
an appropriate membership property to contain elements. It should be noted that the srsName
attribute can only occur on the outermost GeometryCollection and must not appear as an

<LineString srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<coord><X>0.0</X><Y>0.0</Y></coord>
<coord><X>20.0</X><Y>35.0</Y></coord>
<coord><X>100.0</X><Y>100.0</Y></coord>

</LineString>

<Polygon gid="_98217" srsName="http://www.opengis.net/gml/srs/epsg.xml#4326"
<outerBoundaryIs>

<LinearRing>
<coordinates>0.0,0.0 100.0,0.0 100.0,100.0 0.0,100.0 0.0,0.0</coordina

</LinearRing>
</outerBoundaryIs>
<innerBoundaryIs>

<LinearRing>
<coordinates>10.0,10.0 10.0,40.0 40.0,40.0 40.0,10.0 10.0,10.0</coordi

</LinearRing>
</innerBoundaryIs>
<innerBoundaryIs>

<LinearRing>
<coordinates>60.0,60.0 60.0,90.0 90.0,90.0 90.0,60.0 60.0,60.0</coordi

</LinearRing>
</innerBoundaryIs>

</Polygon>

Page 23 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

attribute of any of the enclosed geometry elements. Here's an example of a MultiLineString
instance with three members:

In addition the Geometry schema defines a heterogeneous geometry collection represented by
the MultiGeometry element that provides a container for arbitrary geometry elements; it
might contain any of the primitive geometry elements such as Points, LineStrings, Polygons,
MultiPoints, MultiLineStrings, MultiPolygons and even other GeometryCollections. The
MultiGeometry element has a generic geometryMember property which returns the next
geometry element in the collection. An example of a heterogeneous MultiGeometry instance
appears below.

<MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<lineStringMember>

<LineString>
<coord><X>56.1</X><Y>0.45</Y></coord>
<coord><X>67.23</X><Y>0.98</Y></coord>

</LineString>
</lineStringMember>
<lineStringMember>

<LineString>
<coord><X>46.71</X><Y>9.25</Y></coord>
<coord><X>56.88</X><Y>10.44</Y></coord>

</LineString>
</lineStringMember>
<lineStringMember>

<LineString>
<coord><X>324.1</X><Y>219.7</Y></coord>
<coord><X>0.45</X><Y>4.56</Y></coord>

</LineString>
</lineStringMember>

</MultiLineString>

<MultiGeometry gid="c731" srsName="http://www.opengis.net/gml/srs/epsg.xml#4
<geometryMember>

<Point gid="P6776">
<coord><X>50.0</X><Y>50.0</Y></coord>

</Point>
</geometryMember>

<geometryMember>
<LineString gid="L21216">

<coord><X>0.0</X><Y>0.0</Y></coord>
<coord><X>0.0</X><Y>50.0</Y></coord>
<coord><X>100.0</X><Y>50.0</Y></coord>

</LineString>
</geometryMember>

<geometryMember>
<Polygon gid="_877789">

<outerBoundaryIs>
<LinearRing>

Page 24 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

4.4 Encoding features with geometry

GML 2.0 provides a pre-defined set of geometry properties that can be used to relate
geometries of particular types to features. Consider the case where the DeanType feature
definition has a point property called location, which is one of the pre-defined descriptive
names that can substitute for the formal name pointProperty.

which is based on the following application schema fragment:

Alternatively one can define geometry properties specific to an application schema. For
example one might wish to name the property specifying the location of the Dean instance as
deanLocation:

<coordinates>0.0,0.0 100.0,0.0 50.0,100.0 0.0,0.0</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</geometryMember>
</MultiGeometry>

<Dean>
<familyName>Smith</familyName>
<age>42</age>
<nickName>Smithy</nickName>
<nickName>Bonehead</nickName>
<gml:location>

<gml:Point>
<gml:coord><gml:X>1.0</gml:X><gml:Y>1.0</gml:Y></gml:coord>

</gml:Point>
<gml:location>

</Dean>

<element name="Dean" type="ex:DeanType" substitutionGroup="gml:_Feature"/>

<complexType name="DeanType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="familyName" type="string"/>
<element name="age" type="integer"/>
<element name="nickName" type="string" minOccurs="0"

maxOccurs="unbounded"/>
<element ref="gml:location"/>

</sequence>
</extension>

</complexContent>
</complexType>

Page 25 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

In this example gml:PointPropertyType is available as a useful pre-defined property type
for a feature to employ in just the same way that strings and integers are. The local declaration
of the <deanLocation> element basically establishes an alias for <gml:pointProperty> as a
subelement of Dean.

The exclusive use of globally-scoped element declarations reflects a different authoring style
that 'pools' all elements in the same symbol space (see section 2.5 of the XML Schema
specification, Part 1 for further details); this style also allows us to assign elements to a
substitution group such that designated elements can substitute for a particular head element,
which must be declared as a global element. The deanLocation property would be declared
globally and referenced in a type definition as shown below:

4.5 Encoding feature collections

GML 2.0 provides support for building feature collections. An element in an application

<element name="Dean" type="ex:DeanType" substitutionGroup="gml:_Feature"/>

<complexType name="DeanType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="familyName" type="string"/>
<element name="age" type="integer"/>
<element name="nickName" type="string" minOccurs="0"

maxOccurs="unbounded"/>
<element name="deanLocation" type="gml:PointPropertyType"/>

</sequence>
</extension>

</complexContent>
</complexType>

<element name="Dean" type="ex:DeanType" substitutionGroup="gml:_Feature"/>
<element name="deanLocation" type="gml:PointPropertyType"

substitutionGroup="gml:pointProperty"/>

<complexType name="DeanType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="familyName" type="string"/>
<element name="age" type="integer"/>
<element name="nickName" type="string" minOccurs="0" maxOccurs="unbo
<element ref="ex:deanLocation" />

</sequence>
</extension>

</complexContent>
</complexType>

Page 26 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

schema that plays the role of a feature collection must derive from
gml:AbstractFeatureCollectionType and declare that it can substitute for the (abstract)
<gml:_FeatureCollection> element. A feature collection can use the featureMember property
to show containment of other features and/or feature collections.

Consider the 'Cambridge' example (described in Section 5) where a CityModel feature
collection contains Road and River feature members. In this modification to the example the
features are contained within the CityModel using the generic gml:featureMember property
that instantiates the gml:FeatureAssociationType:

With the following associated application schema fragments:

<CityModel fid="Cm1456">
<dateCreated>Feb 2000</dateCreated>
<gml:featureMember>

<River fid="Rv567">....</River>
</gml:featureMember>

<gml:featureMember>
<River fid="Rv568">....</River>

</gml:featureMember>

<gml:featureMember>
<Road fid="Rd812">....</Road>

</gml:featureMember>
</CityModel>

<element name="CityModel" type="ex:CityModelType"
substitutionGroup="gml:_FeatureCollection"/>

<element name="River" type="ex:RiverType" substitutionGroup="gml:_Feature"/>
<element name="Road" type="ex:RoadType" substitutionGroup="gml:_Feature"/>

<complexType name="CityModelType">
<complexContent>

<extension base="gml:AbstractFeatureCollectionType">
<sequence>

<element name="dateCreated" type="month"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="RiverType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>....</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="RoadType">

Page 27 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML 2.0 provides a mechanism for feature identification. All GML features have an optional
'fid' attribute of type ID inherited from gml:AbstractFeatureType; this means that features
in the same GML document cannot share a 'fid' value. The 'fid' attribute and simple link
elements constructed using XLink attributes provide a means of unambiguously referencing
specific features within a GML document.

Within a feature collection, a <featureMember> element can either contain a single feature or
point to a feature that is stored remotely (including elsewhere in the same document). A
simple link element can be constructed by including a specific set of XLink attributes. The
XML Linking Language (XLink) is currently a Proposed Recommendation of the World Wide
Web Consortium [XLink]. XLink allows elements to be inserted into XML documents so as to
create sophisticated links between resources; such links can be used to reference remote
properties.

A simple link element can be used to implement pointer functionality, and this functionality
has been built into various GML 2.0 elements by including the
gml:AssociationAttributeGroup in these constructs:

! gml:FeatureAssociationType,
! the geometry collection types, and
! all of the pre-defined geometry property types.

As an example, we can modify the CityModel fragment shown above to include a remote
River members without making any changes to the application schema.

<complexContent>
<extension base="gml:AbstractFeatureType">

<sequence>.....</sequence>
</extension>

</complexContent>
</complexType>

<CityModel fid="Cm1456">
<dateCreated>Feb 2000</dateCreated>

<gml:featureMember xlink:type="simple"
xlink:href="http://www.myfavoritesite.com/rivers.xml#Rv567"/>

<gml:featureMember xlink:type="simple"
xlink:href="http://www.myfavoritesite.com/rivers.xml#Rv568"/>

<gml:featureMember>
<Road fid="Rd812">....</Road>

</gml:featureMember>
</CityModel>

Page 28 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

It should be noted that the featureMember property can both point to a remote feature and
contain a feature. It is not possible in XML Schema to preclude this practice using a purely
grammar-based validation approach. The GML 2.0 specification regards a featureMember in
this state to be undefined.

The most basic syntax for a simple link is as follows:

where the xlink:title attribute is optional. The xlink:href attribute must point to an object
whose type matches that of the value type of the property. It is up to the application to validate
that this is the case, an XML parser would not place any constraints on the element linked to
by the href attribute.

To enhance clarity a new attribute defined in the 'gml' namespace is introduced to supplement
the basic XLink attributes: remoteSchema. The remoteSchema attribute is a URI reference that
uses XPointer syntax to identify the GML schema fragment that constrains the resource
pointed to by the locator attribute; this additional attribute is included in the
gml:AssociationAttributeGroup and so is already available to featureMember properties
so that they can be expressed like this (assuming "RiverType" is the value of some identifier):

XLink attributes can only be placed on property elements, and there are no constraints on the
values of the xlink:title attribute. Simple XLinks also allow the use of the xlink:role attribute.
However this is most commonly a reflection of the property (for example the featureMember
role name) that is using the link.

The XLink specification requires that the xlink:href attribute point to the resource participating
in the link by providing a Uniform Resource Identifier (URI). For example, such a URI may
constitute a request to a remote server such as an OGC Web Feature Server (WFS). It might be
noted that in response to a 'GETFEATURE' request a WFS will return the GML description of
a feature, provided the feature identifier (the value of its 'fid' attribute) is known:

The value of the xlink:href must be a valid URI per IETF RFC 2396 [RFC2396] and RFC

<propertyName xlink:type="simple"
xlink:title="Description of target instance"
xlink:href="http://www.myfavoritesite.com/locations.xml#identifier" />

<gml:featureMember xlink:type="simple"
gml:remoteSchema="http://www.myfavoritesite.com/types.xsd#RiverType"
xlink:href="http://www.myfavoritesite.com/rivers#Rv567"/>

xlink:href="http://www.myfavoritesite.com/wfs?WFSVER=0.0.12
&REQUEST=GETFEATURE
&FEATUREID=Rv567"

Page 29 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

2732 [RFC2732]; as a consequence, certain characters in the URI string must be escaped
according to the URI encoding rules set forth in the XLink specification and in the
aforementioned IETF documents.

It might be noted that the WFS 'GETFEATURE' request returns a single feature. If the
gml:remoteSchema attribute is being used, then it should point to the definition of the relevant
feature type. Alternatively an XLink can be used to encode an entire query request to a WFS
(required character references do not appear in the query string for clarity):

In this case the WFS may 'manufacture' a generic feature collection to hold the results of the
query. But since feature collections also have a feature type, the gml:remoteSchema attribute
(if used) should point to the feature type definition of this feature collection, not the types of
the features returned by the query.

4.6 Encoding feature associations

The essential purpose of XML document structure is to describe data and the relationships
between components within it. With GML it is possible to denote relationships either by
containment (binary relationships only) or by linking, but there is no a priori reason for
preferring one style over another. The examples presented so far have emphasized
containment, generally using the property name (i.e. the role name) as a 'wrapper' to make the
logical structure explicit.

The GML data model is based on three basic constructs: Feature, Feature Type (i.e. Class),
and Property. Both Classes and Properties are resources that are independently defined in

xlink:href="http://www.myfavoritesite.com/wfs?
WFSVER=0.0.12&
REQUEST=GETFEATURE&
TYPENAME=INWATERA_1M&
FILTER='<Filter>

<Not>
<Disjoint>

<PropertyName>INWATERA_1M.WKB_GEOM</PropertyName>
<Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#43

<outerboundaryIs>
<LinearRing>

<coordinates>
-150,50 -150,60 -125,60 -125,50 -150,50

</coordinates>
</LinearRing>

</outerboundaryIs>
</Polygon>

</Disjoint>
</Not>

</Filter>'"

Page 30 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML. A property is defined by specifying the range and domain of the property, each of
which must be defined GML types. A GML feature is a Class on which are defined a number
of properties; zero, one, or more of these properties are geometry-valued. A Resource is
anything that has an identity [RFC2396]; this can include electronic documents, a person, a
service or a geographic feature.

In the previous section specialized links were used to allow a feature collection in a GML
document to contain features external to the document. Had the features been present in the
GML document, there would have been no compelling reason to use a link, since the
'containment' relationship could have been indicated by using nesting in the GML document.
However there are many relationships that cannot be encoded using containment. Consider the
'adjacency' relationship between three LandParcel features. In total there are three
relationships representing the three pairings of features. Using the nesting approach
encouraged so far, one might be tempted to encode this in the following, albeit messy, way
using an adjacentTo property (we will present a much cleaner form later):

In the above fragment the links are being used to identify features within the same GML
document. In this example the adjacency relationship is binary (it connects pairs of features)
and bi-directional (it can be navigated in both directions). This has been achieved by using
two adjacentTo properties (each with a simple XLink) to represent each relationship. The
relationship itself has no identity in this encoding, and it is not possible to record properties on
the relationship. Relationships with these characteristics are sometimes referred to as
'lightweight' relationships.

In the above encoding the adjacentTo property sometimes 'nests' the related feature and
sometimes 'points' to it. A more symmetrical version of the above would be:

<LandParcel fid="Lp2034">
<area>2345</area>
<gml:extentOf>...</extentOf>
<adjacentTo>

<LandParcel fid="Lp2035">
<area>9812</area>
<gml:extentOf>...</extentOf>
<adjacentTo xlink:type="simple" xlink:href="#Lp2034"/>
<adjacentTo>

<LandParcel fid="Lp2036">
<area>8345</area>
<gml:extentOf>...</extentOf>
<adjacentTo xlink:type="simple" xlink:href="#Lp2034"/>
<adjacentTo xlink:type="simple" xlink:href="#Lp2035"/>

</LandParcel>
</adjacentTo>

</LandParcel>
</adjacentTo>
<adjacentTo xlink:type="simple" xlink:href="#Lp2036"/>

</LandParcel>

Page 31 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Here the ellipses represent the necessary containment constructs holding this set of
LandParcels in some root feature collection. However both examples conform to the same
application schema:

A 'heavyweight' relationship provides identity for the relationship and an opportunity to have

<LandParcel fid="Lp2034">
<area>2345</area>
<gml:extentOf>...</extentOf>
<adjacentTo xlink:type="simple" xlink:href="#Lp2035"/>
<adjacentTo xlink:type="simple" xlink:href="#Lp2036"/>

</LandParcel>
....
<LandParcel fid="Lp2035">

<area>9812</area>
<gml:extentOf>...</extentOf>
<adjacentTo xlink:type="simple" xlink:href="#Lp2034"/>
<adjacentTo xlink:type="simple" xlink:href="#Lp2036"/>

</LandParcel>
....
<LandParcel fid="Lp2036">

<area>8345</area>
<gml:extentOf>...</extentOf>
<adjacentTo xlink:type="simple" xlink:href="#Lp2034"/>
<adjacentTo xlink:type="simple" xlink:href="#Lp2035"/>

</LandParcel>

<element name="LandParcel" type="ex:LandParcelType"
substitutionGroup="gml:_Feature"/>

<element name="adjacentTo" type="ex:AdjacentToType"
substitutionGroup="gml:featureMember" />

<complexType name="LandParcelType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="area" type="integer"/>
<element ref="gml:extentOf"/>
<element ref="ex:adjacentTo" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name="AdjacentToType">
<complexContent>

<restriction base="gml:FeatureAssociationType">
<sequence>

<element ref="ex:LandParcel"/>
</sequence>

</restriction>
</complexContent>

</complexType>

Page 32 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

properties on the relationship. To extend the adjacency example, one might wish to have a
heavyweight adjacency relationship represented by an AdjacentPair feature type with the
length of the common border recorded as a commonBoundaryLength property. This might be
encoded in GML as:

Note that in this example the AdjacentPair instances could exist in a separate GML
document from the LandParcel features since the adjacentTo properties can point to features
outside of the GML document. Whether the instances are in a single or multiple documents,
they all conform to the same application schema:

<LandParcel fid="Lp2034">
<area>2345</area>
<gml:extentOf>...</extentOf>

</LandParcel>
....
<LandParcel fid="Lp2035">

<area>9812</area>
<gml:extentOf>...</extentOf>

</LandParcel>
....
<AdjacentPair fid="Ad1465">

<commonBoundaryLength>231</commonBoundaryLength>
<adjacentTo xlink:type="simple" xlink:href="#Lp2034"/>
<adjacentTo xlink:type="simple" xlink:href="#Lp2035"/>

</Adjacent>

<element name="LandParcel" type="ex:LandParcelType"
substitutionGroup="gml:_Feature"/>

<element name="adjacentTo" type="ex:AdjacentToType"
substitutionGroup="gml:featureMember"/>

<element name="AdjacentPair" type="ex:AdjacentPairType"
substitutionGroup="gml:_Feature"/>

<complexType name="LandParcelType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="area" type="integer"/>
<element ref="gml:extentOf"/>
<!-- note adjacentTo has been removed -->

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name="AdjacentToType">
<complexContent>

<restriction base="gml:FeatureAssociationType">
<sequence>

<element ref="ex:LandParcel"/>
</sequence>

</restriction>

Page 33 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The use of extended-type XLink elements offers a more concise means of handling n-ary
associations and support for creating third-party linkbases. However, such topics are beyond
the scope of this document and interested readers are encouraged to consult the XLink
specification for details.

5 GML application schemas

5.1 Introduction

The base schemas (Geometry, Feature, XLink) can be viewed as the components of an
application framework for developing schemas or sets of schemas that pertain to a particular
domain (e.g. Forestry), jurisdiction (e.g. France), or information community. Furthermore,
such application schemas may be developed in a more horizontal fashion to support many
information communities.

There are some basic conformance requirements that every application schema must satisfy.
Specifically, a conforming GML application schema must heed the following general
requirements:

1. an application schema must adhere to the detailed schema development rules described
in Section 5.2

2. an application schema must not change the name, definition, or data type of mandatory
GML elements.

3. abstract type definitions may be freely extended or restricted.
4. the application schema must be made available to anyone receiving data structured

according to that schema.
5. the relevant schemas must specify a target namespace that must not be

http://www.opengis.net/gml (i.e. the 'gml' namespace).

</complexContent>
</complexType>

<complexType name="AdjacentPairType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="commonBoundaryLength" type="integer"/>
<element ref="ex:adjacentTo" minOccurs="2" maxOccurs="2"/>

</sequence>
</extension>

</complexContent>
</complexType>

6: Worked examples Go

Page 34 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

A set of logically-related GML schemas, which we term the GML Framework, is depicted in
Figure 5.1. The GML schemas provide basic constructs for handling geospatial data in a
modular manner. A more specialized application framework containing component application
schemas would typically be created for a particular theme or domain, but may also be quite
horizontal in nature.

Figure 5.1: GML as a core framework

5.2 Rules for constructing application schemas (normative)

The following rules must be adhered to when constructing GML application schemas.

5.2.1 Defining new feature types

Developers of application schemas can create their own feature or feature collection types, but
they must ensure that these concrete feature and feature collection types are subtyped (either

Page 35 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

directly or indirectly) from the corresponding GML types: gml:AbstractFeatureType or
gml:AbstractFeatureCollectionType.

5.2.2 Defining new geometry types

Authors may create their own geometry types if GML lacks the desired construct. To do this,
authors must ensure that these concrete geometry and geometry collection types are subtyped
(either directly or indirectly) from the corresponding GML types: AbstractGeometryType or
GeometryCollectionType:

Any user-defined geometry subtypes shall inherit the elements and attributes of the base GML
geometry types without restriction, but may extend these base types to meet application
requirements, such as providing a finer degree of interoperability with legacy systems and data
sets.

5.2.3 Defining new geometry properties

<complexType name="MyFeature1Type">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<!-- additional child elements inserted here -->
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="MyFeature2Type">
<complexContent>

<extension base="foo:MyFeature1Type">
<sequence>

<!-- additional child elements inserted here -->
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="MyGeometry1Type">
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<!-- additional child elements inserted here -->
</sequence>

</extension>
</complexContent>

</complexType>

Page 36 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Authors may create their own geometry properties that encapsulate geometry types they have
defined according to subsection 5.2.2; they must ensure that these properties are subtyped
(either directly or indirectly) from gml:GeometryPropertyType and that they do not change
the cardinality of the target instance, which must be a bonafide geometry construct:

5.2.4 Declaring a target namespace

Authors must declare a target namespace for their schemas. All elements declared in the
schema, along with their type definitions, will reside in this namespace. Validation will not
succeed if the instance document does not reside in the schema's target namespace. Note that it
is not a requirement that URIs actually point to anything concrete, such as a schema
document; namespaces are basically just a mechanism to keep element names distinct, thereby
preventing namespace 'collisions'.

To use namespaces, elements are given qualified names (QName) that consist of two parts: the
prefix is mapped to a URI reference and signifies the namespace to which the element
belongs; the local part conforms to the usual NCName production rules from the W3C
Namespaces Recommendation:

NCName ::= (Letter | '_') (NCNameChar)*
NCNameChar ::= Letter | Digit | '.' | '-' | '_' | CombiningChar | Extender

In each worked example the namespace for all elements is explicitly indicated in order to
show how vocabularies from different namespaces can intermingle in a single instance
document. The use of fully qualified names is specified by setting the value of the
elementFormDefault attribute of <schema> to "qualified":

<complexType name="MyGeometry1PropertyType">
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="foo:MyGeometry1Type" />
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<schema targetNamespace="http://www.bar.net/foo"
xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:foo="http://www.bar.net/foo"
elementFormDefault="qualified"
version="0.1">

<!-- import constructs from the GML Feature and Geometry schemas -->

Page 37 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

5.2.5 Importing schemas

A conforming instance document can employ constructs from multiple namespaces, as
indicated in Figure 5.2. Schema-A in the 'foo' namespace plugs into the GML framework via
the Feature schema (which also brings along the geometry constructs). The Feature schema
resides in the 'gml' namespace along with the Geometry schema, so it uses the include
mechanism. However, since Schema-A targets a different namespace, it must employ the
import mechanism to use the core GML constructs.

Figure 5.2: Using schemas from multiple namespaces

Authors must bear in mind that the 'import' mechanism is the only means whereby an
application schema can bring in GML constructs and make use of them. Since a conforming
application schema cannot target the core GML namespace ("http://www.opengis.net/gml"),
other mechanisms such as 'include' and 'redefine' cannot be employed.

5.2.6 Using substitution groups

Global elements that define substitution groups shall be used for both class (e.g. feature,
geometry etc.) and properties that are defined in GML application schemas, and can substitute
for the corresponding GML elements wherever these are expected. Declare an element
globally and specify a suitable substitution group if the element is required to substitute for

<import namespace="http://www.opengis.net/gml" schemaLocation="feature.xsd
. . .

</schema>

Page 38 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

another (possibly abstract) element; substitution groups thus enable type promotion (i.e.
treating a specific type as a more general supertype). The following global declaration ensures
that if foo:CircleType is a defined geometry type, then a <Circle> element can appear
wherever the (abstract) gml:_Geometry element is expected:

Identical elements declared in more than one complex type definition in a schema should
reference a global element. If the <Circle> element is declared globally in the 'foo' namespace
(as shown above), it is referenced from within a type definition as follows:

5.2.7 Declaring additional properties

Schema authors can use the built-in geometric properties or derive their own when necessary
as shown in subsection 5.2.3. GML provides a number of predefined geometric properties:
location, centerLineOf, extentOf, and so on. Authors can also apply a different name to a base
type and use it instead:

A feature may also have properties that possess a more complex content model (like geometry
properties or feature members). It's important to keep in mind that complex properties
represent binary relationships, and that property elements carry the role name of that
association. In general, the value of a property element must be one or more instances (either
local or remote) of some defined simple or complex type.

As an example, consider the inspectedBy property of a waste handling facility that associates a
<WasteFacility> instance with an <Inspector> instance:

<schema . . .>
<element name="Circle" type="foo:CircleType"

substitutionGroup="gml:_Geometry" />
. . .

</schema>

<complexType name="MyHubPropertyType">
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="foo:Circle" />
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<element name="crashSite" type="gml:PointPropertyType"
substitutionGroup="gml:pointProperty" />

Page 39 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

The above fragment indicates that foo:InspectionType includes the simple-type XLink
attributes (that are bundled up in gml:AssociationAttributeGroup) to take advantage of the
optional pointer functionality; this can be useful if the same inspector assesses multiple
facilities and is the target of multiple references:

The definition of the Inspector type is not shown here, but it must appear in some
application schema. Furthermore, an inspector need not be a feature instance--perhaps an
inspector is a Person that possesses properties such as an 'oid' identifier. Without the href and
other XLink attributes a valid instance might then look like the following:

5.2.8 Defining new feature association types

Developers of application schemas can create their own feature association types that must
derive from gml:FeatureAssociationType. The target instance must be a bonafide GML
feature, and it may appear once (explicitly minOccurs="0", implicitly maxOccurs="1"):

<complexType name="WasteFacilityType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<!-- other properties -->
<element name="inspectedBy" type="foo:InspectedByType" />

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name="InspectedByType">
<sequence minOccurs="0">

<element ref="foo:Inspector"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup" />

</complexType>

<WasteFacility>
. . .
<inspectedBy xlink:type="simple" xlink:href="inspectors.xml#n124" />

</WasteFacility>

<WasteFacility>
. . .
<inspectedBy>

<Inspector oid="n124">. . .</Inspector>
</inspectedBy>

</WasteFacility>

Page 40 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

In many cases it may be desirable to allow instances of only certain feature types as members
of a feature collection. A Feature Filter as described below shall be applied to ensure that only
properly labeled features are valid members.

<complexType name="MyFeatureAssociationType">
<complexContent>

<restriction base="gml:FeatureAssociationType">
<sequence minOccurs="0">

<element ref="foo:MyFeature1Type" />
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

Feature Filter

Intent:
Restrict membership in a feature collection to permit only instances of specified feature types
as allowable members.

Also Known As:
Barbarians at the Gate

Motivation:
Feature collections that extend gml:AbstractFeatureCollectionType are somewhat
'promiscuous' in that they will accept any concrete GML feature as an allowable member. A
"Feature Filter" can be applied to ensure that only properly labeled features are valid
members.

Implementation:

1. Declare a set of abstract elements to 'label' allowable members in a feature collection:
<element name="_SchoolFeature" type="gml:AbstractFeatureType"

substitutionGroup="gml:_Feature" abstract="true"/>

2. Define a filter by restricting gml:FeatureAssociationType:
<complexType name="SchoolMemberType">

<complexContent>
<restriction base="gml:FeatureAssociationType">

<sequence minOccurs="0">
<element ref="ex:_SchoolFeature"/>

</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

Page 41 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

6 Worked examples of application schemas (non-normative)

This section presents several examples to illustrate the construction of application schema that
employ the base GML schemas. All examples in this document have been validated using the
XSV parser (version 1.166/1.77, 2000-09-28), a Python implementation that supports the
current XML Schema Candidate Recommendation; several other parsers (both commercial
and open-source implementations) now also solidly support the current specification. An
online validation service that uses XSV is available at this URL:
<http://www.w3.org/2000/09/webdata/xsv>; while this checking service requires that all
documents be web-accessible, it is also possible to download the source files and use the
parser offline.

Two examples are briefly summarized here and are explored in some depth using UML class
diagrams, corresponding GML application schemas, and sample instance documents. One
example is based on a simple model of the city of Cambridge, and is described more fully in
Box 1.1 below.

3. Label allowable features as they are declared globally:
<element name="School" type="ex:SchoolType"

substitutionGroup="ex:_SchoolFeature"/>

7: Profiles of GML Go

Box 1.1: The Cambridge example

This example has a single feature collection of type CityModel and contains two features
using a containment relationship called 'cityMember'. The feature collection has a string
property called dateCreated with the value 'Feb 2000' and a geometric property called
boundedBy with a 'Box' value. The Box geometry (which represents the 'bounding box' of
the feature collection) is expressed in the SRS identified by the value of the srsName
attribute: this URI reference points to a fragment in another XML document that contains
information about the reference system.

The first feature member is an instance of RiverType with the name "Cam" and description
"The river that runs through Cambridge"; it has a geometric property called centerLineOf
with a LineString value. The LineString geometry is expressed in the same SRS used by the
bounding box.

The second feature member is an instance of RoadType with description "M11". It has a
string property called classification with value "motorway" and an integer property called
number with value "11". The road has a geometric property called linearGeometry with a

Page 42 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

In the 'Cambridge' example the first feature member uses only standard property names
defined by GML, whereas the second feature member uses application-specific property
names. Thus this example will demonstrate how GML is capable of being used in a custom
application model, but it is not intended to provide examples of how the various types of
geometry are encoded.

A second example will be used to illustrate how GML can represent a hierarchy of feature
collections; this will be referred to as the 'Schools' example and it is summarized in Box 1.2.

Figure 6.1 is a UML diagram for the Cambridge example. As shown, allowable city members
must be Road or River instances; a Mountain instance is not a valid member of the feature
collection.

Figure 6.1: UML diagram for the Cambridge example

LineString value; this LineString geometry is also expressed in the same SRS used by the
bounding box.

Box 1.2: The Schools example
In this example we have a root feature collection of type StateType that contains two
features collections (instances of SchoolDistrictType) using the pre-defined containment
relationship 'featureMember'. The State collection also has a studentPopulation property.
Each of the SchoolDistrict collections contains two School or College features using the
containment relationship 'schoolMember'.

A SchoolDistrict feature has a string property called name and a polygon property called
extentOf. A School feature has a string property called address and a point property called
location. A College feature also has a string property called address plus a point property
called pointProperty.

Page 43 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Listing 6.1 is a custom city schema for the Cambridge example. The explicit reference to
"city.xsd" in the root element of the instance document in Listing 6.2 (i.e. the value of the
xsi:schemaLocation attribute) is not required, but in this case it provides a hint to the
validating parser regarding the location of a relevant schema document.

Listing 6.1: city.xsd View so

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: city.xsd -->
<schema targetNamespace="http://www.opengis.net/examples"

xmlns:ex="http://www.opengis.net/examples"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified"
version="2.03">

<annotation>
<appinfo>city.xsd v2.03 2001-02</appinfo>
<documentation xml:lang="en">

GML schema for the Cambridge example
</documentation>

</annotation>

Page 44 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<!-- import constructs from the GML Feature and Geometry schemas -->
<import namespace="http://www.opengis.net/gml" schemaLocation="feature.xsd

<!-- ==
global element declarations

=== -->

<element name="CityModel" type="ex:CityModelType"
substitutionGroup="gml:_FeatureCollection" />

<element name="cityMember" type="ex:CityMemberType"
substitutionGroup="gml:featureMember"/>

<element name="Road" type="ex:RoadType"
substitutionGroup="ex:_CityFeature"/>

<element name="River" type="ex:RiverType"
substitutionGroup="ex:_CityFeature"/>

<element name="Mountain" type="ex:MountainType"
substitutionGroup="gml:_Feature"/>

<!-- a label for restricting membership in the CityModel collection -->
<element name="_CityFeature" type="gml:AbstractFeatureType" abstract="true

substitutionGroup="gml:_Feature"/>

<!-- ==
type definitions for city model

=== -->

<complexType name="CityModelType">
<complexContent>

<extension base="gml:AbstractFeatureCollectionType">
<sequence>

<element name="dateCreated" type="month"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="CityMemberType">
<annotation>

<documentation>
A cityMember is restricted to those features (or feature
collections)that are declared equivalent to ex:_CityFeature.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:FeatureAssociationType">
<sequence minOccurs="0">

<element ref="ex:_CityFeature"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="RiverType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

Page 45 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Note that the application schema targets the 'ex' namespace; it imports the GML feature and
geometry constructs from the 'gml' namespace. The <boundedBy> element is defined in the
Feature schema; the <name> and <description> elements are also defined there. The
<CityModel> element is an instance of the user-defined ex:CityModelType type that is
derived by extension from gml:AbstractFeatureCollectionType. The types ex:RiverType
and ex:RoadType are both derived by extension from gml:AbstractFeatureType, which is
defined in the GML Feature schema; these derivations assure that the application schema
conforms with the GML implementation specification of the OGC Simple Feature model.

Listing 6.2 is a simple schema-valid instance document that conforms to city.xsd. A few
words of explanation about the <Mountain> feature are in order! If this particular cityMember
is uncommented in Listing 6.2, it will raise a validation error because even though the
mountain is a well-formed GML feature, it is not recognized as a valid city feature. Note that
in city.xsd the <Road> and <River> features are declared equivalent to ex:_CityFeature using
the substitutionGroup attribute; this abstract element functions as a label that restricts
membership in the <CityModel> feature collection--only features so labeled are allowable
members, as defined by CityMemberType. This technique demonstrates the application of the
"Feature Filter" (see 5.2.7) that restricts membership in GML feature collections.

<element ref="gml:centerLineOf"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="RoadType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="linearGeometry" type="gml:LineStringPropertyType"/>
<element name="classification" type="string"/>
<element name="number" type="string"/>

</sequence>
</extension>

</complexContent>
</complexType>

<!-- this is just here to demonstrate feature member restriction -->
<complexType name="MountainType">

<complexContent>
<extension base="gml:AbstractFeatureType">

<sequence>
<element name="elevation" type="integer"/>

</sequence>
</extension>

</complexContent>
</complexType>

</schema>

Page 46 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

One <cityMember> element in Listing 6.2 functions as a simple link by employing several
XLink attributes; in effect we have a pointer entitled "Trinity Lane". Any <featureMember>
element may behave as a simple link that references a remote resource. The link can point to a
document fragment using an xpointer scheme that identifies a location, point, or range in the
target document [XPointer]. In this case the value of the href attribute for the remote member
contains an HTTP query string that can retrieve the feature instance; the remoteSchema
attribute points to a schema fragment that constrains the instance: namely, the complex type
definition in city.xsd that bears the name "RoadType".

Listing 6.2: cambridge.xml View s

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: cambridge.xml -->
<CityModel xmlns="http://www.opengis.net/examples"

xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/examples city.xsd">

<gml:name>Cambridge</gml:name>
<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord><gml:X>0.0</gml:X><gml:Y>0.0</gml:Y></gml:coord>
<gml:coord><gml:X>100.0</gml:X><gml:Y>100.0</gml:Y></gml:coord>

</gml:Box>
</gml:boundedBy>

<cityMember>
<River>

<gml:description>The river that runs through Cambridge.</gml:descripti
<gml:name>Cam</gml:name>
<gml:centerLineOf>

<gml:LineString srsName="http://www.opengis.net/gml/srs/epsg.xml#432
<gml:coord><gml:X>0</gml:X><gml:Y>50</gml:Y></gml:coord>
<gml:coord><gml:X>70</gml:X><gml:Y>60</gml:Y></gml:coord>
<gml:coord><gml:X>100</gml:X><gml:Y>50</gml:Y></gml:coord>

</gml:LineString>
</gml:centerLineOf>

</River>
</cityMember>

<cityMember>
<Road>

<gml:name>M11</gml:name>
<linearGeometry>

<gml:LineString srsName="http://www.opengis.net/gml/srs/epsg.xml#4
<gml:coord><gml:X>0</gml:X><gml:Y>5.0</gml:Y></gml:coord>
<gml:coord><gml:X>20.6</gml:X><gml:Y>10.7</gml:Y></gml:coord>
<gml:coord><gml:X>80.5</gml:X><gml:Y>60.9</gml:Y></gml:coord>

</gml:LineString>
</linearGeometry>

<classification>motorway</classification>
<number>11</number>

</Road>

Page 47 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Figure 6.2 is a UML diagram for the Schools example. The SchoolDistrictclass is
associated with the State class via the featureMember relationship, and instances of the
Schoolor College classes are members of the SchoolDistrict collection.

Figure 6.2: UML diagram for the Schools example

</cityMember>

<cityMember xlink:type="simple" xlink:title="Trinity Lane"
xlink:href="http://www.foo.net/cgi-bin/wfs?FeatureID=C10239"
gml:remoteSchema="city.xsd#xpointer(//complexType[@name='RoadType'])"/>

<!-- a mountain doesn't belong here! Uncomment this cityMember and see
the parser complain!

<cityMember>
<Mountain>

<gml:description>World's highest mountain is in Nepal!</gml:descriptio
<gml:name>Everest</gml:name>
<elevation>8850</elevation>

</Mountain>
</cityMember>
-->

<dateCreated>2000-11</dateCreated>
</CityModel>

Page 48 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Listing 6.3 is an application schema for the Schools example. The purpose of this example is
to demonstrate that feature collections may indeed contain other feature collections. To keep
things fairly simple no attempt has been made to restrict membership in any of the collections;
this means that a valid instance document could contain any GML feature within the <State>
and <SchoolDistrict> collections, not just those pertaining to educational institutions. Sub-
section 5.2.7 describes a design pattern for restricting collection membership.

Listing 6.3: schools.xsd View so

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: schools.xsd -->
<schema targetNamespace="http://www.opengis.net/examples"

xmlns:ex="http://www.opengis.net/examples"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified" version="2.01">

<annotation>
<appinfo>schools.xsd v2.01 2001-02</appinfo>
<documentation xml:lang="en">

Page 49 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML schema for Schools example.
</documentation>

</annotation>

<!-- import constructs from the GML Feature and Geometry schemas -->
<import namespace="http://www.opengis.net/gml" schemaLocation="feature.xsd

<!-- ==
global element declarations

=== -->

<element name="State" type="ex:StateType"
substitutionGroup="gml:_FeatureCollection"/>

<element name="SchoolDistrict" type="ex:SchoolDistrictType"
substitutionGroup="gml:_FeatureCollection"/>

<element name="schoolMember" type="gml:FeatureAssociationType"
substitutionGroup="gml:featureMember"/>

<element name="School" type="ex:SchoolType"
substitutionGroup="gml:_Feature"/>

<element name="College" type="ex:CollegeType"
substitutionGroup="gml:_Feature"/>

<element name="address" type="string"/>

<!-- ==
type definitions for state educational institutions

=== -->

<complexType name="StateType">
<complexContent>

<extension base="gml:AbstractFeatureCollectionType">
<sequence>

<element name="studentPopulation" type="integer"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="SchoolDistrictType">
<complexContent>

<extension base="gml:AbstractFeatureCollectionType">
<sequence>

<element ref="gml:extentOf"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="SchoolType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element ref="ex:address"/>
<element ref="gml:location"/>

</sequence>
</extension>

</complexContent>
</complexType>

Page 50 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

A few interesting things are happening in this example. The root <State> element is an
instance of ex:StateType, which is derived from the abstract
gml:AbstractFeatureCollectionType defined in the GML Feature schema. One of the
child elements, <SchoolDistrict>, is also a feature collection; in effect we have a feature
collection containing a feature collection as one of its members. Listing 6.4 is a conforming
instance document. Refer to Box 1.2 for a summary of the example.

<complexType name="CollegeType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element ref="ex:address"/>
<element ref="gml:pointProperty" />

</sequence>
</extension>

</complexContent>
</complexType>

</schema>

Listing 6.4: schools.xml Vie

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: schools.xml -->
<State xmlns="http://www.opengis.net/examples"

xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/examples schools.xsd">

<gml:description>
Educational institutions with student populations exceeding 500.

</gml:description>
<gml:name>School districts in the North Region.</gml:name>
<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>

</gml:Box>
</gml:boundedBy>

<gml:featureMember>
<SchoolDistrict>

<gml:name>District 28</gml:name>
<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>50</gml:X><gml:Y>40</gml:Y></gml:coord>

</gml:Box>
</gml:boundedBy>

<schoolMember>
<School>

Page 51 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<gml:name>Alpha</gml:name>
<address>100 Cypress Ave.</address>
<gml:location>

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326
<gml:coord><gml:X>20.0</gml:X><gml:Y>5.0</gml:Y></gml:coord>

</gml:Point>
</gml:location>

</School>
</schoolMember>

<schoolMember>
<School>

<gml:name>Beta</gml:name>
<address>1673 Balsam St.</address>
<gml:location>

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326
<gml:coord><gml:X>40.0</gml:X><gml:Y>5.0</gml:Y></gml:coord>

</gml:Point>
</gml:location>

</School>
</schoolMember>

<gml:extentOf>
<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:outerBoundaryIs>
<gml:LinearRing>

<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>50</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>50</gml:X><gml:Y>40</gml:Y></gml:coord>
<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>
</gml:extentOf>

</SchoolDistrict>
</gml:featureMember>

<gml:featureMember>
<SchoolDistrict>

<gml:name>District 32</gml:name>
<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>30</gml:X><gml:Y>50</gml:Y></gml:coord>

</gml:Box>
</gml:boundedBy>

<schoolMember>
<School>

<gml:name>Gamma</gml:name>
<address>651 Sequoia Ave.</address>
<gml:location>

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326
<gml:coord><gml:X>5.0</gml:X><gml:Y>20.0</gml:Y></gml:coord>

</gml:Point>
</gml:location>

</School>

Page 52 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Note the use of <coord> elements to convey coordinate values; the XML parser constrains the
number of tuples according to geometry type. For example, a <Point> element has exactly one
coordinate tuple, and a <LinearRing> has at least four.

The final example illustrates the construction of a "horizontal" application schema in that it
might be applied to a range of application domains. This example is simple data interchange
schema that facilitates the exchange of application-level data structures (i.e. features and/or
feature collections); such a schema provides a generic means of transferring instances of
simple features.

Listing 6.5 is a sample instance document that conforms to the schema in Listing 6.6. A
feature may include any of the predefined simple geometric properties (e.g. those that return
Points, Polygons, or LineStrings). Non-spatial properties must reflect one of the atomic
datatypes of XML Schema.

</schoolMember>

<schoolMember xlink:type="simple" xlink:href="http:abc.com">
<College>

<gml:name>Delta</gml:name>
<address>260 University Blvd.</address>
<gml:pointProperty>

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326
<gml:coord><gml:X>5.0</gml:X><gml:Y>40.0</gml:Y></gml:coord>

</gml:Point>
</gml:pointProperty>

</College>
</schoolMember>

<schoolMember xlink:type="simple" xlink:title="Epsilon High School"
xlink:href="http:www.state.gov/schools/cgi-bin/wfs?schoolID=hs736"
gml:remoteSchema="schools.xsd#xpointer(//complexType[@name='SchoolTy

<gml:extentOf>
<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:outerBoundaryIs>
<gml:LinearRing>

<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
<gml:coord><gml:X>40</gml:X><gml:Y>50</gml:Y></gml:coord>
<gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>
<gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>
</gml:extentOf>

</SchoolDistrict>
</gml:featureMember>
<studentPopulation>392620</studentPopulation>

</State>

Listing 6.5: gmlpacket.xml View source

Page 53 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

Listing 6.6 is the 'gmlpacket' schema. The <gmlPacket> element is the root feature collection;
this schema restricts allowable feature members to instances of pak:StaticFeatureType.
None of the type definitions in the gmlpacket schema can be extended or restricted in any
manner, and this schema cannot serve as the basis for any other application schema (i.e. it
cannot be imported or included into another schema).

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: gmlpacket.xml -->
<gmlPacket xmlns="http://www.opengis.net/examples/packet"

xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation=

"http://www.opengis.net/examples/packet gmlpacket.xsd">

<gml:description>Road network elements</gml:description>
<gml:boundedBy>

<gml:null>unknown</gml:null>
</gml:boundedBy>

<packetMember>
<StaticFeature fid="Highway-99" featureType="Road">

<gml:centerLineOf>
<gml:LineString>

<gml:coordinates>...</gml:coordinates>
</gml:LineString>

</gml:centerLineOf>
<property>

<propertyName>numLanes</propertyName>
<value dataType="integer">2</value>

</property>
<property>

<propertyName>surfaceType</propertyName>
<value dataType="string">asphalt</value>

</property>
</StaticFeature>

</packetMember>

<Metadata>
<title>Vancouver-Squamish corridor</title>

</Metadata>
</gmlPacket>

Listing 6.6: gmlpacket.xsd View so

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: gmlpacket.xsd -->
<schema targetNamespace="http://www.opengis.net/examples/packet"

xmlns:pak="http://www.opengis.net/examples/packet"
xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified"
finalDefault="#all" version="0.5">

Page 54 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<annotation>
<appinfo>gmlpacket.xsd v0.5 2001-02</appinfo>
<documentation xml:lang="en">

GML schema for simple data transfer.
</documentation>

</annotation>

<!-- import constructs from the GML Feature and Geometry schemas -->
<import namespace="http://www.opengis.net/gml" schemaLocation="feature.xsd

<element name="gmlPacket" type="pak:GMLPacketType"/>
<element name="packetMember" type="pak:packetMemberType"/>
<element name="StaticFeature" type="pak:StaticFeatureType"/>

<complexType name="GMLPacketBaseType">
<complexContent>

<restriction base="gml:AbstractFeatureCollectionType">
<sequence>

<element ref="gml:description" minOccurs="0"/>
<element ref="gml:name" minOccurs="0"/>
<element ref="gml:boundedBy"/>
<element ref="pak:packetMember" minOccurs="0" maxOccurs="unbounded

</sequence>
<attribute name="fid" type="ID" use="optional"/>

</restriction>
</complexContent>

</complexType>

<complexType name="GMLPacketType">
<complexContent>

<extension base="pak:GMLPacketBaseType">
<sequence>

<element name="Metadata" type="pak:MetadataType" minOccurs="0"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="packetMemberType">
<complexContent>

<restriction base="gml:FeatureAssociationType">
<sequence minOccurs="0">

<element ref="pak:StaticFeature"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="MetadataType">
<sequence>

<element name="origin" type="string" minOccurs="0"/>
<element name="title" type="string" minOccurs="0"/>
<element name="abstract" type="string" minOccurs="0"/>

</sequence>
</complexType>

Page 55 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

7 Profiles of GML

GML is a fairly complex specification that is rich in functionality. In general an
implementation need not exploit the entire specification, but may employ a subset of
constructs corresponding to specific relevant requirements. A profile of GML could be defined
to enhance interoperability and to curtail ambiguity by allowing only a specific subset of

<complexType name="StaticFeatureType">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element ref="gml:pointProperty" minOccurs="0"/>
<element ref="gml:polygonProperty" minOccurs="0"/>
<element ref="gml:lineStringProperty" minOccurs="0"/>
<element name="property" type="pak:PropertyType"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="featureType" type="string" use="required"/>

</extension>
</complexContent>

</complexType>

<complexType name="PropertyType">
<sequence>

<element name="propertyName" type="string"/>
<element name="value">

<complexType>
<simpleContent>

<extension base="string">
<attribute name="dataType" type="pak:DataType"

use="required"/>
</extension>

</simpleContent>
</complexType>

</element>
</sequence>

</complexType>

<simpleType name="DataType">
<restriction base="string">

<enumeration value="string"/>
<enumeration value="integer"/>
<enumeration value="long"/>
<enumeration value="decimal"/>
<enumeration value="boolean"/>
<enumeration value="time"/>
<enumeration value="date"/>

</restriction>
</simpleType>

</schema>

A: Geometry schema Go

Page 56 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

GML; different application schemas could conform to such a profile in order to take advantage
of any interoperability or performance advantages that it offers in comparison with full-blown
GML. Such profiles could be defined inside other OGC specifications.

There may be cases where reduced functionality is acceptable, or where processing
requirements compel use of a logical subset of GML. For example, applications that don't
need to handle XLink attributes in any form can adhere to a specific profile that excludes
them; the constraint in this case would be to not use links. Other cases might include defining
constraints on the level of nesting allowed inside tags (i.e. tree depth), or only allowing
features with homogeneous properties as members of a feature collection. In many cases such
constraints can be enforced via new schemas; others may be enforced through procedural
agreements within an information community.

Here are the guidelines for developing a profile:

1. A profile of GML is a restriction of the basic descriptive capability of GML.
2. Any such profile must be fully compliant with the GML 2.0 specification.
3. GML abstract type definitions may be freely extended or restricted.
4. A profile must not change the name, definition, or data type of mandatory GML

elements.
5. The schema or schemas that define a profile must be made available to any application

schemas which will conform to the profile.
6. The relevant schema or schemas that define a profile must reside in a specified

namespace that must not be http://www.opengis.net/gml (i.e. the core 'gml'
namespace)

Appendix A: The Geometry schema, v2.06 (normative)

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: geometry.xsd -->
<schema targetNamespace="http://www.opengis.net/gml"

xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
elementFormDefault="qualified"
version="2.06">

<annotation>
<appinfo>geometry.xsd v2.06 2001-02</appinfo>
<documentation xml:lang="en">

GML Geometry schema. Copyright (c) 2001 OGC, All Rights Reserved.
</documentation>

</annotation>

<!-- bring in the XLink attributes -->

B: Feature schema Go

Page 57 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<import namespace="http://www.w3.org/1999/xlink" schemaLocation="xlinks.xs

<!-- ==
global declarations

=== -->

<element name="_Geometry" type="gml:AbstractGeometryType" abstract="true"/
<element name="_GeometryCollection" type="gml:GeometryCollectionType"

abstract="true"/>
<element name="geometryMember" type="gml:GeometryAssociationType"/>

<!-- primitive geometry elements -->
<element name="Point" type="gml:PointType" substitutionGroup="gml:_Geometr
<element name="LineString" type="gml:LineStringType"

substitutionGroup="gml:_Geometry"/>
<element name="LinearRing" type="gml:LinearRingType"

substitutionGroup="gml:_Geometry"/>
<element name="Polygon" type="gml:PolygonType"

substitutionGroup="gml:_Geometry"/>
<element name="Box" type="gml:BoxType"/>

<!-- aggregate geometry elements -->
<element name="MultiGeometry" type="gml:GeometryCollectionType"/>
<element name="MultiPoint" type="gml:MultiPointType"

substitutionGroup="gml:_Geometry"/>
<element name="MultiLineString" type="gml:MultiLineStringType"

substitutionGroup="gml:_Geometry"/>
<element name="MultiPolygon" type="gml:MultiPolygonType"

substitutionGroup="gml:_Geometry"/>

<!-- coordinate elements -->
<element name="coord" type="gml:CoordType"/>
<element name="coordinates" type="gml:CoordinatesType"/>

<!-- this attribute gives the location where an element is defined -->
<attribute name="remoteSchema" type="uriReference" />

<!-- ==
abstract supertypes

=== -->

<complexType name="AbstractGeometryType" abstract="true">
<annotation>

<documentation>
All geometry elements are derived from this abstract supertype;
a geometry element may have an identifying attribute ('gid').
It may be associated with a spatial reference system.

</documentation>
</annotation>
<attribute name="gid" type="ID" use="optional"/>
<attribute name="srsName" type="uriReference" use="optional"/>

</complexType>

<complexType name="AbstractGeometryCollectionBaseType" abstract="true">
<annotation>

<documentation>
This abstract base type for geometry collections just makes the
srsName attribute mandatory.

Page 58 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

</documentation>
</annotation>
<complexContent>

<restriction base="gml:AbstractGeometryType">
<attribute name="gid" type="ID" use="optional"/>
<attribute name="srsName" type="uriReference" use="required"/>

</restriction>
</complexContent>

</complexType>

<attributeGroup name="AssociationAttributeGroup">
<annotation>

<documentation>
These attributes can be attached to any element, thus allowing it
to act as a pointer. The 'remoteSchema' attribute allows an element
that carries link attributes to indicate that the element is declare
in a remote schema rather than by the schema that constrains the
current document instance.

</documentation>
</annotation>
<attributeGroup ref="xlink:simpleLink"/>
<attribute ref="gml:remoteSchema" use="optional"/>

</attributeGroup>

<complexType name="GeometryAssociationType">
<annotation>

<documentation>
An instance of this type (e.g. a geometryMember) can either
enclose or point to a primitive geometry element. When serving
as a simple link that references a remote geometry instance,
the value of the gml:remoteSchema attribute can be used to
locate a schema fragment that constrains the target instance.

</documentation>
</annotation>
<sequence>

<element ref="gml:_Geometry" minOccurs="0"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</complexType>

<!-- ==
primitive geometry types

=== -->

<complexType name="PointType">
<annotation>

<documentation>
A Point is defined by a single coordinate tuple.

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<choice>
<element ref="gml:coord"/>
<element ref="gml:coordinates"/>

</choice>
</sequence>

Page 59 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

</extension>
</complexContent>

</complexType>

<complexType name="LineStringType">
<annotation>

<documentation>
A LineString is defined by two or more coordinate tuples, with
linear interpolation between them.

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<choice>
<element ref="gml:coord" minOccurs="2" maxOccurs="unbounded"/>
<element ref="gml:coordinates"/>

</choice>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="LinearRingType">
<annotation>

<documentation>
A LinearRing is defined by four or more coordinate tuples, with
linear interpolation between them; the first and last coordinates
must be coincident.

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<choice>
<element ref="gml:coord" minOccurs="4" maxOccurs="unbounded"/>
<element ref="gml:coordinates"/>

</choice>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="BoxType">
<annotation>

<documentation>
The Box structure defines an extent using a pair of coordinate tuple

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<choice>
<element ref="gml:coord" minOccurs="2" maxOccurs="2"/>
<element ref="gml:coordinates"/>

</choice>
</sequence>

</extension>

Page 60 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

</complexContent>
</complexType>

<complexType name="PolygonType">
<annotation>

<documentation>
A Polygon is defined by an outer boundary and zero or more inner
boundaries which are in turn defined by LinearRings.

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryType">
<sequence>

<element name="outerBoundaryIs">
<complexType>

<sequence>
<element ref="gml:LinearRing"/>

</sequence>
</complexType>

</element>
<element name="innerBoundaryIs" minOccurs="0" maxOccurs="unbounded

<complexType>
<sequence>

<element ref="gml:LinearRing"/>
</sequence>

</complexType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<!-- ==
aggregate geometry types

=== -->

<complexType name="GeometryCollectionType">
<annotation>

<documentation>
A geometry collection must include one or more geometries, reference
through geometryMember elements. User-defined geometry collections
that accept GML geometry classes as members must instantiate--or
derive from--this type.

</documentation>
</annotation>
<complexContent>

<extension base="gml:AbstractGeometryCollectionBaseType">
<sequence>

<element ref="gml:geometryMember" maxOccurs="unbounded"/>
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="MultiPointType">
<annotation>

<documentation>
A MultiPoint is defined by one or more Points, referenced through

Page 61 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

pointMember elements.
</documentation>

</annotation>
<complexContent>

<restriction base="gml:GeometryCollectionType">
<sequence>

<element name="pointMember" maxOccurs="unbounded">
<complexType>

<sequence>
<element ref="gml:Point"/>

</sequence>
</complexType>

</element>
</sequence>

</restriction>
</complexContent>

</complexType>

<complexType name="MultiLineStringType">
<annotation>

<documentation>
A MultiLineString is defined by one or more LineStrings, referenced
through lineStringMember elements.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryCollectionType">
<sequence>

<element name="lineStringMember" maxOccurs="unbounded">
<complexType>

<sequence>
<element ref="gml:LineString"/>

</sequence>
</complexType>

</element>
</sequence>

</restriction>
</complexContent>

</complexType>

<complexType name="MultiPolygonType">
<annotation>

<documentation>
A MultiPolygon is defined by one or more Polygons, referenced throug
polygonMember elements.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryCollectionType">
<sequence>

<element name="polygonMember" maxOccurs="unbounded">
<complexType>

<sequence>
<element ref="gml:Polygon"/>

</sequence>
</complexType>

</element>
</sequence>

Page 62 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

</restriction>
</complexContent>

</complexType>

<!-- ==
There are two ways to represent coordinates: (1) as a sequence
of <coord> elements that encapsulate tuples, or (2) using a
single <coordinates> string.

=== -->

<complexType name="CoordType">
<annotation>

<documentation>
Represents a coordinate tuple in one, two, or three dimensions.

</documentation>
</annotation>
<sequence>

<element name="X" type="decimal"/>
<element name="Y" type="decimal" minOccurs="0"/>
<element name="Z" type="decimal" minOccurs="0"/>

</sequence>
</complexType>

<complexType name="CoordinatesType">
<annotation>

<documentation>
Coordinates can be included in a single string, but there is no
facility for validating string content. The value of the 'cs' attrib
is the separator for coordinate values, and the value of the 'ts'
attribute gives the tuple separator (a single space by default); the
default values may be changed to reflect local usage.

</documentation>
</annotation>
<simpleContent>

<extension base="string">
<attribute name="decimal" type="string" use="default" value="."/>
<attribute name="cs" type="string" use="default" value=","/>
<attribute name="ts" type="string" use="default" value=" "/>

</extension>
</simpleContent>

</complexType>
</schema>

Appendix B: The Feature schema , v2.06 (normative)

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: feature.xsd -->
<schema targetNamespace="http://www.opengis.net/gml"

xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified"
version="2.06">

C: XLinks schema Go

Page 63 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<annotation>
<appinfo>feature.xsd v2.06 2001-02</appinfo>
<documentation xml:lang="en">

GML Feature schema. Copyright (c) 2001 OGC, All Rights Reserved.
</documentation>

</annotation>

<!-- include constructs from the GML Geometry schema -->
<include schemaLocation="geometry.xsd"/>

<!-- ==
global declarations

=== -->

<element name="_Feature" type="gml:AbstractFeatureType" abstract="true"/>
<element name="_FeatureCollection" type="gml:AbstractFeatureCollectionType

abstract="true" substitutionGroup="gml:_Feature"/>
<element name="featureMember" type="gml:FeatureAssociationType"/>

<!-- some basic geometric properties of features -->
<element name="_geometryProperty" type="gml:GeometryPropertyType" abstract
<element name="geometryProperty" type="gml:GeometryPropertyType" />
<element name="boundedBy" type="gml:BoundingShapeType"/>

<element name="pointProperty" type="gml:PointPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<element name="polygonProperty" type="gml:PolygonPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<element name="lineStringProperty" type="gml:LineStringPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<element name="multiPointProperty" type="gml:MultiPointPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<element name="multiLineStringProperty" type="gml:MultiLineStringPropertyT
substitutionGroup="gml:_geometryProperty"/>

<element name="multiPolygonProperty" type="gml:MultiPolygonPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<element name="multiGeometryProperty" type="gml:MultiGeometryPropertyType"
substitutionGroup="gml:_geometryProperty"/>

<!-- common aliases for geometry properties -->
<element name="location" type="gml:PointPropertyType"

substitutionGroup="gml:pointProperty"/>
<element name="centerOf" type="gml:PointPropertyType"

substitutionGroup="gml:pointProperty"/>
<element name="position" type="gml:PointPropertyType"

substitutionGroup="gml:pointProperty"/>
<element name="extentOf" type="gml:PolygonPropertyType"

substitutionGroup="gml:polygonProperty"/>
<element name="coverage" type="gml:PolygonPropertyType"

substitutionGroup="gml:polygonProperty"/>
<element name="edgeOf" type="gml:LineStringPropertyType"

substitutionGroup="gml:lineStringProperty"/>
<element name="centerLineOf" type="gml:LineStringPropertyType"

substitutionGroup="gml:lineStringProperty"/>
<element name="multiLocation" type="gml:MultiPointPropertyType"

substitutionGroup="gml:multiPointProperty"/>
<element name="multiCenterOf" type="gml:MultiPointPropertyType"

Page 64 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

substitutionGroup="gml:multiPointProperty"/>
<element name="multiPosition" type="gml:MultiPointPropertyType"

substitutionGroup="gml:multiPointProperty"/>
<element name="multiCenterLineOf" type="gml:MultiLineStringPropertyType"

substitutionGroup="gml:multiLineStringProperty"/>
<element name="multiEdgeOf" type="gml:MultiLineStringPropertyType"

substitutionGroup="gml:multiLineStringProperty"/>
<element name="multiCoverage" type="gml:MultiPolygonPropertyType"

substitutionGroup="gml:multiPolygonProperty"/>
<element name="multiExtentOf" type="gml:MultiPolygonPropertyType"

substitutionGroup="gml:multiPolygonProperty"/>

<!-- common feature descriptors -->
<element name="description" type="string"/>
<element name="name" type="string"/>

<!-- ==
abstract supertypes

=== -->

<complexType name="AbstractFeatureType" abstract="true">
<annotation>

<documentation>
An abstract feature provides a set of common properties. A concrete
feature type must derive from this type and specify additional
properties in an application schema. A feature may optionally
possess an identifying attribute ('fid').

</documentation>
</annotation>
<sequence>

<element ref="gml:description" minOccurs="0"/>
<element ref="gml:name" minOccurs="0"/>
<element ref="gml:boundedBy" minOccurs="0"/>
<!-- additional properties must be specified in an application schema

</sequence>
<attribute name="fid" type="ID" use="optional"/>

</complexType>

<complexType name="AbstractFeatureCollectionBaseType" abstract="true">
<annotation>

<documentation>
This abstract base type just makes the boundedBy element mandatory
for a feature collection.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:AbstractFeatureType">
<sequence>

<element ref="gml:description" minOccurs="0"/>
<element ref="gml:name" minOccurs="0"/>
<element ref="gml:boundedBy"/>

</sequence>
<attribute name="fid" type="ID" use="optional"/>

</restriction>
</complexContent>

</complexType>

<complexType name="AbstractFeatureCollectionType" abstract="true">

Page 65 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<annotation>
<documentation>

A feature collection contains zero or more featureMember elements.
</documentation>

</annotation>
<complexContent>

<extension base="gml:AbstractFeatureCollectionBaseType">
<sequence>

<element ref="gml:featureMember" minOccurs="0" maxOccurs="unbounde
</sequence>

</extension>
</complexContent>

</complexType>

<complexType name="GeometryPropertyType">
<annotation>

<documentation>
A simple geometry property encapsulates a geometry element.
Alternatively, it can function as a pointer (simple-type link)
that refers to a remote geometry element.

</documentation>
</annotation>
<sequence minOccurs="0">

<element ref="gml:_Geometry"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</complexType>

<complexType name="FeatureAssociationType">
<annotation>

<documentation>
An instance of this type (e.g. a featureMember) can either
enclose or point to a feature (or feature collection); this
type can be restricted in an application schema to allow only
specified features as valid participants in the association.
When serving as a simple link that references a remote feature
instance, the value of the gml:remoteSchema attribute can be
used to locate a schema fragment that constrains the target
instance.

</documentation>
</annotation>
<sequence minOccurs="0">

<element ref="gml:_Feature"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</complexType>

<complexType name="BoundingShapeType">
<annotation>

<documentation>
Bounding shapes--a Box or a null element are currently allowed.

</documentation>
</annotation>
<sequence>

<choice>
<element ref="gml:Box"/>
<element name="null" type="gml:NullType" />

</choice>

Page 66 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

</sequence>
</complexType>

<!-- ==
geometry properties

=== -->

<complexType name="PointPropertyType">
<annotation>

<documentation>
Encapsulates a single point to represent position, location, or
centerOf properties.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:Point"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="PolygonPropertyType">
<annotation>

<documentation>
Encapsulates a single polygon to represent coverage or extentOf
properties.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:Polygon"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="LineStringPropertyType">
<annotation>

<documentation>
Encapsulates a single LineString to represent centerLineOf or
edgeOf properties.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:LineString"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

Page 67 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<complexType name="MultiPointPropertyType">
<annotation>

<documentation>
Encapsulates a MultiPoint element to represent the following
discontiguous geometric properties: multiLocation, multiPosition,
multiCenterOf.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:MultiPoint"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="MultiLineStringPropertyType">
<annotation>

<documentation>
Encapsulates a MultiLineString element to represent the following
discontiguous geometric properties: multiEdgeOf, multiCenterLineOf.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:MultiLineString"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="MultiPolygonPropertyType">
<annotation>

<documentation>
Encapsulates a MultiPolygon to represent the following discontiguous
geometric properties: multiCoverage, multiExtentOf.

</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">
<sequence minOccurs="0">

<element ref="gml:MultiPolygon"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<complexType name="MultiGeometryPropertyType">
<annotation>

<documentation>Encapsulates a MultiGeometry element.</documentation>
</annotation>
<complexContent>

<restriction base="gml:GeometryPropertyType">

Page 68 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<sequence minOccurs="0">
<element ref="gml:MultiGeometry"/>

</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>

</restriction>
</complexContent>

</complexType>

<simpleType name="NullType">
<annotation>

<documentation>
If a bounding shape is not provided for a feature collection,
explain why. Allowable values are:
innapplicable - the features do not have geometry
unknown - the boundingBox cannot be computed
unavailable - there may be a boundingBox but it is not divulged
missing - there are no features

</documentation>
</annotation>
<restriction base="string">

<enumeration value="inapplicable"/>
<enumeration value="unknown"/>
<enumeration value="unavailable"/>
<enumeration value="missing"/>

</restriction>
</simpleType>

</schema>

Appendix C: The XLinks schema (normative)

At the time that GML 2.0 was finalised, the World Wide Web Consortium (W3C) had not
produced a normative schema to support its XLink recommendation. As an interim measure,
this schema has been produced by the editors of GML 2.0 to provide the XLink attributes for
general use; pending the provision of a definitive schema by the W3C, this schema shall be
considered a normative component of GML 2.0.

<?xml version="1.0" encoding="UTF-8"?>
<!-- File: xlinks.xsd -->
<schema targetNamespace="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="2.01">

<annotation>
<appinfo>xlinks.xsd v2.01 2001-02</appinfo>
<documentation xml:lang="en">

This schema provides the XLink attributes for general use.
</documentation>
</annotation>

<!-- ==
global declarations

=== -->

Page 69 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<!-- locator attribute -->
<attribute name="href" type="uriReference" />

<!-- semantic attributes -->
<attribute name="role" type="uriReference" />
<attribute name="arcrole" type="uriReference" />
<attribute name="title" type="string" />

<!-- behavior attributes -->
<attribute name="show">

<annotation>
<documentation>

The 'show' attribute is used to communicate the desired presentation
of the ending resource on traversal from the starting resource; it's
value should be treated as follows:
new - load ending resource in a new window, frame, pane, or other

presentation context
replace - load the resource in the same window, frame, pane, or

other presentation context
embed - load ending resource in place of the presentation of the

starting resource
other - behavior is unconstrained; examine other markup in the

link for hints
none - behavior is unconstrained

</documentation>
</annotation>
<simpleType>

<restriction base="string">
<enumeration value="new"/>
<enumeration value="replace"/>
<enumeration value="embed"/>
<enumeration value="other"/>
<enumeration value="none"/>

</restriction>
</simpleType>

</attribute>

<attribute name="actuate">
<annotation>

<documentation>
The 'actuate' attribute is used to communicate the desired timing
of traversal from the starting resource to the ending resource;
it's value should be treated as follows:
onLoad - traverse to the ending resource immediately on loading

the starting resource
onRequest - traverse from the starting resource to the ending

resource only on a post-loading event triggered for
this purpose

other - behavior is unconstrained; examine other markup in link
for hints

none - behavior is unconstrained
</documentation>

</annotation>
<simpleType>

<restriction base="string">
<enumeration value="onLoad"/>
<enumeration value="onRequest"/>

Page 70 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<enumeration value="other"/>
<enumeration value="none"/>

</restriction>
</simpleType>

</attribute>

<!-- traversal attributes -->
<attribute name="label" type="string" />
<attribute name="from" type="string" />
<attribute name="to" type="string" />

<!-- ==
Attributes grouped by XLink type, as specified in the W3C
Proposed Recommendation (dated 2000-12-20)

=== -->

<attributeGroup name="simpleLink">
<attribute name="type" type="string" use="fixed" value="simple"

form="qualified"/>
<attribute ref="xlink:href" use="optional"/>
<attribute ref="xlink:role" use="optional"/>
<attribute ref="xlink:arcrole" use="optional"/>
<attribute ref="xlink:title" use="optional"/>
<attribute ref="xlink:show" use="optional"/>
<attribute ref="xlink:actuate" use="optional"/>

</attributeGroup>

<attributeGroup name="extendedLink">
<attribute name="type" type="string" use="fixed" value="extended"

form="qualified"/>
<attribute ref="xlink:role" use="optional"/>
<attribute ref="xlink:title" use="optional"/>

</attributeGroup>

<attributeGroup name="locatorLink">
<attribute name="type" type="string" use="fixed" value="locator"

form="qualified"/>
<attribute ref="xlink:href" use="required"/>
<attribute ref="xlink:role" use="optional"/>
<attribute ref="xlink:title" use="optional"/>
<attribute ref="xlink:label" use="optional"/>

</attributeGroup>

<attributeGroup name="arcLink">
<attribute name="type" type="string" use="fixed" value="arc"

form="qualified"/>
<attribute ref="xlink:arcrole" use="optional"/>
<attribute ref="xlink:title" use="optional"/>
<attribute ref="xlink:show" use="optional"/>
<attribute ref="xlink:actuate" use="optional"/>
<attribute ref="xlink:from" use="optional"/>
<attribute ref="xlink:to" use="optional"/>

</attributeGroup>

<attributeGroup name="resourceLink">
<attribute name="type" type="string" use="fixed" value="resource"

form="qualified"/>
<attribute ref="xlink:role" use="optional"/>

Page 71 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

<attribute ref="xlink:title" use="optional"/>
<attribute ref="xlink:label" use="optional"/>

</attributeGroup>

<attributeGroup name="titleLink">
<attribute name="type" type="string" use="fixed" value="title"

form="qualified"/>
</attributeGroup>

<attributeGroup name="emptyLink">
<attribute name="type" type="string" use="fixed" value="none"

form="qualified"/>
</attributeGroup>

</schema>

Appendix D: References

[OGC00-0040]
Whiteside, A, and J. Bobbit. 2000. Recommended Definition Data for Coordinate
Reference Systems and Coordinate Transformations. OGC Project Document 00-040r7.

[RFC2396]
Uniform Resource Identifiers (URI): Generic Syntax. (August 1998). Available
[Online]: <ftp://www.ietf.org/rfc/rfc2396.txt>

[RFC2732]
Format for Literal IPv6 Addresses in URLs. (December 1999). Available [Online]:
<http://www.ietf.org/rfc/rfc2732.txt>

[SVG]
Scalable Vector Graphics (SVG) 1.0 Specification. W3C Candidate Recommendation (2
November 2000). Available [Online]: <http://www.w3.org/TR/2000/CR-SVG-
20001102/index.html>

[VRML200x]
The Virtual Reality Modeling Language. Draft International Standard ISO/IEC
14772:200x. Available [Online]:
<http://www.web3d.org/TaskGroups/x3d/specification/>

[XLink]
XML Linking Language (XLink) Version 1.0. W3C Proposed Recommendation (20
December 2000). Available [Online]: <http://www.w3.org./TR/xlink/>

[XMLName]
Namespaces in XML. W3C Recommendation (14 January 1999). Available [Online]:
<http://www.w3.org/TR/1999/REC-xml-names-19990114/>

[XMLSchema-1]
XML Schema Part 1: Structures. W3C Candidate Recommendation (24 October 2000).
Available [Online]: <http://www.w3.org/TR/xmlschema-1/>

[XMLSchema-2]

Page 72 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

XML Schema Part 2: Datatypes. W3C Candidate Recommendation (24 October 2000).
Available [Online]: <http://www.w3.org/TR/xmlschema-2/>

[XPointer]
XML Pointer Language (XPointer) Version 1.0. W3C Candidate Recommendation (7
June 2000). Available [Online]: <http://www.w3.org./TR/xptr/>

Appendix E: Revision history

REC-GML2 (Recommendation, 2001-02-20):

! extensive restructuring of content
! fixed usage of 'type' attribute in xlinks utility schema
! the XLink schema is now normative
! feature collections can now be empty (per OGC Abstract Specification)
! renamed FeatureMemberType and GeometryMemberType to FeatureAssociationType

and GeometryAssociationType, respectively
! updated UML diagrams
! added UML diagrams for the 'Cambridge' and 'Schools' examples
! expanded discussion about profiles and application frameworks (sec. 7)

PR-GML2 (Proposed Recommendation, 2001-01-15):

! Moved discussion of XLink attributes to section 4.4 and deleted the GeoLinks schema
! Removed material on temporal data (sec. 6) to a separate GML Module
! purged RDF remnants
! changed the names of identifying attributes ('fid' for features, 'gid' for geometry

elements)
! added gml:AssociationType to support pointers to remote feature properties
! miscellaneous editorial changes

CR-GML2 (Candidate Recommendation, 2000-12-22):

! changed srsName attribute to type="uriReference"
! the featureMember element and all basic geometric properties can also function as

pointers to remote resources (i.e. as simple-type XLink elements)
! added a brief introduction to section 5 that clarifies the different ways GML can be used

to express associations (i.e. containment vs. linking)
! added an example to section 5.4 demonstrating the use of a linkbase to store instances of

feature relationships (Listings 5.7 - 5.9)
! inserted comments concerning feature identification (sec. 4.2)
! miscellaneous corrections: invalid feature identifiers; invalid xlink:role attributes

Page 73 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

! coordinate strings may now contain 1D, 2D, or 3D tuples
! added a description of the Feature Filter design pattern (sec. 4.4.6)
! removed the gml:label attribute from the GeoLinks schema

Page 74 of 74Geography Markup Language, v2.0

6/26/2001http://www.opengis.net/gml/01-029/GML2.html

